首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructural distribution of T lymphocyte surface membrane receptors for phytohemag-glutinin (PHA) during blast transformation is examined using PHA covalently coupled to ferritin (PHA-Fe). Human peripheral blood lymphocytes from normal donors were enriched for T cells by nylon wool elution and cultured in vitro with PHA-Fe at a concentration known to cause maximal stimulation of DNA synthesis as measured by [3H]thymidine incorporation. Over the course of a 72 h incubation period, cell samples were harvested at regular intervals and examined by transmission electron microscopy. Within several minutes of culture at 37 °C the majority of the ferritin (Fe)-labeled PHA surface receptors on almost all cells undergo rapid endocytosis; some Fe label remains at the cell surface. After several hours, endocytotic vesicles containing Fe-labeled receptors coalesce and undergo condensation. Within 36–48 h, most endocytotic vesicles transform into multivesicular bodies (MVBs). After 48–72 h, 70–80% of the cells had the ultrastructural appearance of blast transformation as characterized by increased size, euchromatic nuclei, nucleolonema and polyribosomes. In 40 % of the blast cells the Fe-labeled MVBs are exocytosed to the cell surface; cytoplasmic MVBs in the remaining portion of the blasts and non-blast lymphocytes do not appear to undergo exocytosis. Although endocytosis and exocytosis of lymphocyte surface receptors during mitogen-induced blast transformation are observed, the role and significance of receptor redistribution to cell activation remains unclear.  相似文献   

2.
Cationized ferritin (CF) was used to label the cell surface anionic sites of Chang rat hepatoma ascites cells. If the hepatoma cells were fixed with glutaraldehyde and treated with CF, the label was distributed evenly over the external surface of the plasma membrane. Treatment of unfixed ascites cells with CF yielded clusters of ferritin particles separated by label-free areas of the plasma membrane. Some unfixed ascites cells were treated firstly with CF, then incubated in veronal buffered saline at 37 °C for 10, 20, 30 and 45 min, subsequently fixed in glutaraldehyde and re-exposed to CF. After 10 min of incubation, the label was arranged into large clusters with the remaining areas of the plasma membrane lightly labelled with CF. At 20 min, only clusters of ferritin were present on the plasma membrane; the remaining area of the cell surface was totally free of label. The ability of the plasma membrane to bind additional CF was completely restored after 45 min of incubation. These results suggest that for some period of time after internalization of CF label on cell surface the plasma membrane is devoid of any detectable negative charge.  相似文献   

3.
Wheat seedlings were subjected to heat shock for 2 min at 45 °C. After heat treatment, the wheat seedlings were incubated at 25 or 35 °C. At 25 °C, but not at 35 °C, the root tips survived the heat shock. Immediately after the heat treatment the free triglyceride content in the treated root tips was higher than in the untreated roots, but the total lipid content was not changed. The ATP content immediately after the heat treatment was variable, but after about 1 h it stabilized at the same level as in the control or at a higher level. After 45 min at 25 °C after heat shock, the endoplasmic reticulum cisternae had expanded, giving rise to small irregular vacuoles. Golgi vesicles were also irregular. Four hours after heat treatment the endoplasmic reticulum and Golgi vesicles again were normal, but mitochondria were irregular with fewer tubules and with adhering membrane curls containing lipids. These membrane curls were not observed 24 h after heat treatment. When incubated at 35 °C after heat shock wheat root meristems died. Some cells in the meristem were still alive 4 h after treatment. They had large vacuoles with membrane whorls and plasmalemmasomes, and in some cases the cells were partly lysed.  相似文献   

4.
The internalization of plasma membrane components labelled with ConA and peroxidase was investigated in monolayer cultures of rat liver cells. After the labelling procedure, the cells were reincubated with PBS free of both ConA and peroxidase for different time periods between 5 min and 3 h at 37 °C. Ligand-induced redistribution of ConA-binding sites finally resulted in a cap with uropod formation after 2–3 h of reincubation. Simultaneously with redistribution, the cell surface label disappeared through internalization, and a membrane recycling into the Golgi apparatus could be observed. Besides the lamellar Golgi apparatus which exhibited a labelling of the cisternae as a consequence of the membrane recycling, the hypertrophied unlabelled Golgi apparatus could be detected in the same cell. Furthermore, many vesicles formed by the hypertrophied Golgi apparatus were found between them and the plasma membrane and in close proximity to the plasma membrane. Fusion of the vesicles with the plasma membrane could be observed. These morphological findings indicate the possibility that the membrane internalization and the membrane recycling simultaneously effect an enhancement of membrane biogenesis and exocytosis, thus compensating for the membrane removal by internalization.  相似文献   

5.
The altered properties of a concanavalin A-resistant Chinese hamster ovary cell line with obvious temperature-sensitive growth properties is described. The variant cell line, CR-7, was shown to have a higher efficiency of colony formation than the parental wild-type population after treatment with various concentrations of concanavalin A (ConA). The variant cells had the properties of a temperature-sensitive cell line as judged by growth studies performed on solid surfaces or in suspension culture at the permissive (34 °C) and non-permissive (39 °C) temperatures; by colony efficiency determinations performed at 34 °C and 39 °C; and by the altered ability to incorporate DNA, RNA, and protein precursors into acid-precipitable material at the non-permissive temperature. Evidence for changes in the membrane properties of CR-7 cells included: a reduced agglutinability in the presence of ConA, an altered cellular morphology on solid surfaces, an enhanced sensitivity to the toxic effects of membrane-active agents, altered and temperature-sensitive adhesiveness properties, and a reduced ability to bind labelled ConA.  相似文献   

6.
Summary The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4°C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5 60 min at 20° and 37°C in Con-A-free serum resulted in a temperature-dependent internalization of membranebound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37°C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constitutents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

7.
Characterization of functional domains of the lymphocyte plasma membrane   总被引:1,自引:0,他引:1  
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (fraction 1) eluted freely from the affinity column, the second (fraction 2) adhered specifically to concanavalin A-Sepharose. Previous analysis showed that both subfractions were right-side-out (Resch, K., Schneider, S. and Szamel, M. (1981) Anal. Biochem. 117, 282-292). The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. After enzymatic radioiodination of thymocytes, the relative distribution of labelled proteins and externally exposed phospholipids was very similar in isolated plasma membranes and in both membrane subfractions, indicating the plasma membrane nature of the subfractions separated by affinity chromatography on concanavalin A-Sepharose. This finding was further substantiated by the nearly identical specific activities of some membrane-bound enzymes, Mg2+-ATPase, alkaline phosphatase and gamma-glutamyl transpeptidase. The specific activities of (Na+ + K+)-ATPase and of lysolecithin acyltransferase were several-fold enriched in fraction 2 compared to fraction 1, especially after rechromatography of fraction 1 on concanavalin A-Sepharose. Unseparated membrane vesicles contained two types of binding site for concanavalin A. In contrast, isolated subfractions showed a linear Scatchard plot; fraction 2 exhibited fewer binding sites for concanavalin A: the association constant was, however, 3.5-times higher than that measured in fraction 1. When plasma membranes isolated from concanavalin A-stimulated lymphocytes were separated by affinity chromatography, the yield of the two subfractions was similar to that of membranes from unstimulated lymphocytes. Upon stimulation with concanavalin A, Mg2+-ATPase, gamma-glutamyl transpeptidase and alkaline phosphatase were suppressed in their activities in both membrane subfractions. In contrast, the specific activities of (Na+ + K+)-ATPase and lysolecithin acyltransferase were enhanced preferentially in the adherent fraction (fraction 2). The data suggest the existence of domains in the plasma membrane of lymphocytes which are formed by a spatial and functional coupling of receptors with high affinity for concanavalin A, and certain membrane-bound enzymes, implicated in the initiation of lymphocyte activation.  相似文献   

8.
P Kugler  A Miki 《Histochemistry》1985,83(4):359-367
The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24 h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4 degrees C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5-60 min at 20 degrees and 37 degrees C in Con-A-free serum resulted in a temperature-dependent internalization of membrane-bound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37 degrees C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constituents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.  相似文献   

9.
In an electron microscopic investigation of the entry of sporozoites of Theileria parva into bovine lymphocytes, the fate of the surface coat of the parasite was traced by immunocytochemical methods. A monoclonal antibody (MAbD1) raised in mice and directed against a surface antigen of sporozoites, was applied to ultrathin frozen sections of bovine lymphocytes infected in vitro. Sites of binding of MAbD1 were localized using a protein A-colloidal gold conjugate as an electron-dense label. The surface of all free sporozoites was labelled. Sporozoites in the process of entering were labelled only on that portion of the membrane not yet tightly bound to the lymphocyte membrane. No label was detected on sporozoites that had completed entry. After fixation with formaldehyde, but not with glutaraldehyde, local areas of labelling were found on lymphocytes in contact with sporozoites and on cells already invaded. The sporozoite organelles, called micronemes, occasionally appeared to contain labelled antigen. No label was found on sporozoites or lymphocytes in control preparations previously exposed to non-specific antibody or treated with protein A-colloidal gold alone. The findings support the conclusion that the sporozoite surface coat, containing the antigen recognized by MAbD1, is shed as the sporozoite enters the host cell.  相似文献   

10.
This study was performed to clarify the fate of membrane constituents internalized from the apical domain in secretory cells, in particular their possible recycling and the compartments involved in it. Glycoproteins of the apical membrane of seminal vesicle secretory cells from guinea-pig were covalently labeled in vitro (0°C, 20 min) with 3H-galactose and the epithelium incubated for 15 min (37°C, first incubation) to allow endocytosis. The label which was not internalized was then exposed to enzymatic hydrolysis (0°C, 30 min) and the epithelium re-incubated to allow membrane movement for 15 and 30 min (37°C, 2nd incubation). After each step of the protocol, tissue pieces were fixed and processed for electron microscope autoradiography and the results studied by morphometric analysis. Following labeling, 99% of the silver grains were associated with the apical domain of the cell membrane (AD). After the 1st incubation at 37°C, 30° of the grains were inside the cells in association with the cytoplasmic vesicles (Cyt ves), secretory vacuoles (SV), Golgi vesicles (GV), Golgi cisternae (GC), multivesicular bodies (MVB), lysosomes (LYS), and the cell membrane basolateral domain (BLD). About 58% of non-internalized radioactivity was removed by hydrolysis. During the 2nd incubation at 37°C the concentration of label increased in BLD and LYS, decreased in SV and MVB, and fluctuated in GC, GV and AD. The distribution of grains observed at 15 min, as compared using the χ-square test, was highly significantly different from that expected without recycling. The results show that cell membrane glycoproteins internalized at the cell apex recycle back to the membrane apical domain and are consistent with the involvement of GC and SV in the recycling pathway. Membrane shuttle between the apical and basolateral domains of the cell membrane is also suggested by these observations.  相似文献   

11.
Summary The ileal absorptive cells of suckling rats exhibit high levels of endocytic activity being engaged in nonselective uptake of macromolecules from the intestinal lumen. The apical cytoplasm usually contains an extensive network of small, membrane-limited tubules (apical tubules: AT), in addition to newly formed endocytic vesicles and large endocytic vacuoles. To determine whether the AT are directly involved in the endocytic process by carrying the tracer into the cell, we have analysed movements of the apical cell membrane of the ileal absorptive cells by using a membrane-bound tracer (horseradish peroxidase-labelled cancanavalin-A: Con-A HRP). The ileal absorptive cells were exposed in vitro to Con-A HRP for 10 min at 4° C, incubated for different times in Con-A free medium at 37° C, and prepared for electron microscopy. After 1 min incubation at 37° C, invaginations of the apical cell membrane, including coated pits, and endocytic vesicles were labelled with HRP-reaction product, whereas the AT and large endocytic vacuoles were negative. After 2.5 min, almost all the large endocytic vacuoles were labelled with reaction product, which was seen in their vacuolar lumen and along the luminal surface of their limiting membrane. A few AT with reaction product were seen in the apical cytoplasm; they were in frequent connection with the reaction-positive large endocytic vacuoles. With increasing incubation time, the number of the labelled AT increased. Thus, after 15 min at 37° C, the apical cytoplasm was fully occupied by the reaction-positive AT. The ends of these AT were often continuous with small spherical coated vesicles. No reaction product was detected in the Golgi complex at any time after incubation. These observations indicate that the AT located in the apical cytoplasm probably originate by budding off from the large endocytic vacuoles, rather than being involved in the process of endocytosis.  相似文献   

12.
Ehrlich ascites tumor cell membranes were completely modified after incubation at 37 °C for 30 min with a small dose of HVJ (about 0.7% of the maximum number of the virus particles that could be adsorbed onto the cells). After this treatment, the cells could adsorb further added HVJ onto their surfaces at 0 °C. But the cell agglutination which was induced by viral adsorption at 0 °C was very weak, and the interaction of the adsorbed virus with the lipid layer of the cell membrane at 37 °C preceding fusion or lysis of the cells was not strong. A discrepancy was observed between acquisition of the modification and liberation of sialic acid (destruction of viral receptors) by viral neuraminidase. The modification proceeded well on incubation at 37 °C but not at lower temperatures. The possibility that the modification is induced by fusion of viral envelopes with cell membranes is discussed.  相似文献   

13.
This study was performed to clarify the fate of membrane constituents internalized from the apical domain in secretory cells, in particular their possible recycling and the compartments involved in it. Glycoproteins of the apical membrane of seminal vesicle secretory cells from guinea-pig were covalently labeled in vitro (0 degrees C, 20 min) with 3H-galactose and the epithelium incubated for 15 min (37 degrees C, first incubation) to allow endocytosis. The label which was not internalized was then exposed to enzymatic hydrolysis (0 degrees C, 30 min) and the epithelium re-incubated to allow membrane movement for 15 and 30 min (37 degrees C, 2nd incubation). After each step of the protocol, tissue pieces were fixed and processed for electron microscope autoradiography and the results studied by morphometric analysis. Following labeling, 99% of the silver grains were associated with the apical domain of the cell membrane (AD). After the 1st incubation at 37 degrees C, 30% of the grains were inside the cells in association with the cytoplasmic vesicles (Cyt ves), secretory vacuoles (SV), Golgi vesicles (GV), Golgi cisternae (GC), multivesicular bodies (MVB), lysosomes (LYS), and the cell membrane basolateral domain (BLD). About 58% of non-internalized radioactivity was removed by hydrolysis. During the 2nd incubation at 37 degrees C the concentration of label increased in BLD and LYS, decreased in SV and MVB, and fluctuated in GC, GV and AD. The distribution of grains observed at 15 min, as compared using the chi-square test, was highly significantly different from that expected without recycling. The results show that cell membrane glycoproteins internalized at the cell apex recycle back to the membrane apical domain and are consistent with the involvement of GC and SV in the recycling pathway. Membrane shuttle between the apical and basolateral domains of the cell membrane is also suggested by these observations.  相似文献   

14.
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic.  相似文献   

15.
After in vitro incubation of Xenopus oocytes with vitellogenin (VTG)-gold conjugate, the gold particles are distributed on the whole plasma membrane. Their concentration in coated pits still occurs at 0 degrees C. At +20 degrees C the label quickly (30 sec) appears in multi-vesicular endosomes (MVE) which segregate together with primary endocytic vesicles into distinct clusters below the plasma membrane. From this step up to crystallization of the yolk platelets, the gold particles stay in the same compartment. During 5.5 h the label progressively increases along the MVE membrane, first (1.5 h) by fusion of primary endocytic vesicles with consecutively enlarging endosomes, then (4 h) by decreasing of the MVE membrane. As concerns the yolk platelet formation, concentration of primordial yolk platelets (PYP) occurs at 5.5 h from the incubation onset, the labeling of preexisting yolk platelets starts at 7 h, while crystallization of PYP begins only after 12-13 h. Our results indicate that VTG receptors are not preclustered in coated pits and their lateral translation is not inhibited at 0 degrees C. The yolk protein processing takes place within one compartment only. The VTG condensation begins with a long concentration phase of receptor-VTG complexes still integrated in the endosome membrane. It occurs in MVE by: i) a repeated fusion of primary endocytic vesicles; ii) removing part of the endosome membrane by internal vesiculation. Fusion between endosomes occurs only after VTG has dissociated from its receptors and VTG dissociates only when when the density of the VTG-receptor complexes in the endosome membrane is sufficient. Crystallization begins after a 7-8 h delay. The endosome migration into the oocyte is also controlled by the binding of VTG to its receptors. Our results also demonstrate that binding of VTG colloidal gold modifies neither the vitellogenic pathway nor the duration of the vitellogenin internalization. However when vitellogenin is bound to colloidal gold, dissociation of ligand-receptor complexes is delayed because the amount of ligand in the incubation medium is necessarily low.  相似文献   

16.
Summary The internalization of the extracellular markers horseradish peroxidase (HRP) and cationized ferritin (CF) by the melanotrophs of the intermediate lobe of the rat pituitary was studied during short-time incubation of mechanically dissociated cells or in cell culture after 5 days. After a 30 min exposure, the tracers were found in electron-lucent granules or vacuoles of approximately the same size as the secretory granules, situated 200–500 nm from the cell membrane. In the cultured cells, which showed a higher rate of tracer uptake, internalization was followed for 1, 2 and 5 min after labelling and during 2 h of exposure. Initially, the label was seen only in coated pits and coated vesicles at the cell membrane. Larger vacuoles were first seen after 2–5 min of incubation. After 2 h of exposure the labelling pattern was distinctly different for the two tracers. CF was found in larger vacuoles of varying morphology, in dilatations at the base of cilia, within Golgi saccules and at the edge of the electron-dense core of forming secretory granules. HRP was found in an extensive array of tubulovesicular structures extending throughout the cytoplasm. The Golgi complex and forming granules were, however, not labelled with HRP. The study identifies part of the electron-lucent granules or vacuoles in the melanotroph as endosomes, and shows that the melanotrophs sort CF and HRP via diverting pathways after internalization, suggesting that granule membrane, and possibly its functional components, can be recycled in these cells.  相似文献   

17.
Cell surface membrane fragments were isolated and purified by successive rate zonal and isopycnic centrifugation of calcium oxalate-loaded pigeon heart microsomes in sucrose density gradients. The most highly purified cell membrane fraction sediments at a buoyant density of 1.105 g/ml. Some of the membrane pieces are present as open fragments and leaky vesicles, while others form tightly sealed vesicles of both inside-in and inside-out membrane orientation. The pigeon heart cell membrane preparation exhibits high (Na+ + K+ + Mg2+)-ATPase and adenylate cyclase activities. Additional activity of these enzymes is uncovered by sodium dodecyl sulfate and alamethicin, respectively. Electron microscopic inspection of the cell surface membrane preparation revealed (a) a predominance of thick-walled vesicles with smooth surfaces on negative staining and (b) binding of concanavalin A to the bulk of isolated membrane pieces following their incubation with the lectin.  相似文献   

18.
1. 1. Human T cell proliferation is suppressed at 27°C, and is both diminished and delayed at 32°C.
2. 2. Temperature shift-up and viability assays indicated that concanavalin A stimulation at 27°C induced cell death in contrast to a transient unresponsiveness (anergy) induced by monoclonal anti-CD3 antibody (CD3) and the superantigen, staphylococcal exterotoxin B.
3. 3. Phytohemagglutinin also induced cell death at 27°C; however, some cells remained viable and proliferation occurred when such cultures were subsequently moved to 37°C.
4. 4. Low temperature suppression of T cell activation was not overcome by a mixture of phorbol ester and calcium ionophore indicating a probable block post-protein kinase C activation. This was confirmed in temperature shift-down assays where incubation for 18–24 h at 37°C was required to bypass the block at 27°C.
5. 5. With the exception of CD3, stimulation at 27°C with the mitogens resulted in interleukin-2 secretion, indicating that the low temperature block(s) is a relatively late event in cell activation.
  相似文献   

19.
Hydrazide horseradish peroxidase, (hydHRP), a hydrazide derivative of the common cytochemical tracer HRP, was covalently coupled to the surface of periodate-treated Chinese hamster ovary (CHO) cells and used to study the distribution and internalization of plasma membrane glycoconjugates. The Schiff-base coupling of hydHRP to the cell surface at 4 degrees C had little effect on cell viability. After coupling, cells were washed at 4 degrees C and the subcellular distribution of hydHRP was determined immediately or after incubation at 37 degrees C. Within 1 hr, hydHRP was observed to cap over pseudopodal-like extensions and then accumulate over a 2.5 h period in a punctate to perinuclear staining pattern over the cell body. By electron microscopy, the pseudopodal-like regions were found to be areas of extensive cell surface invaginations, rich in microfilaments. HydHRP internalized over a 2.5 to 18 hr period was observed in smooth vesicles resembling pinosomes/endosomes, multivesicular bodies (lysosomes), and small perinuclear vesicles. Little, if any, hydHRP activity was detected in association with elements of Golgi apparatus. By cell fractionation in 10% Percoll gradients, hydHRP was found to have accumulated in prelysosomal endocytic vesicles and lysosomes. For cells that were first surface labeled with 125I at 4 degrees C and then conjugated with hydHRP, little, if any, cotransport of the 125I label with hydHRP was observed. Over the entire capping and internalization period, most hydHRP activity remained membrane associated. Overall, these results indicate that the dominant intracellular transport route for a covalent membrane probe, hydHRP glycoconjugate, is similar if not identical to that previously reported for the solute probe native HRP (16) in CHO cells. HydHRP internalization provides further evidence for the independent sorting of proteins in endocytic transport.  相似文献   

20.
The rotational motion of an ouabain spin label with sheep kidney Na,K-ATPase has been measured by electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) measurements. Spin-labelled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 ± 0.1 mol of bound ouabain spin label per ATPase β dimer. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (> 99%) of a broad resonance which is characteristic of a strongly immobilized spin label. ST-EPR measurements of the spin labelled ATPase preparations yield effective correlation times for the bound labels of 209 ± 11 μs at 0°C and 44 ± 4 μs at 20°C. These rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements with glutaraldehyde-crosslinked preparations indicated that the observed rotational correlation times predominantly represented the motion of entire Na,K-ATPase-containing membrane fragments, rather than the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The strong immobilization of the ouabain spin label will make it an effective paramagnetic probe of the extracellular surface of the Na,K-ATPase for a variety of NMR and EPR investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号