首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation of flowering is a crucial trait that allows temperate plants to flower in the favourable conditions of spring. The timing of flowering initiation is governed by two main mechanisms: vernalization that defines a plant's requirement for a prolonged exposure to cold temperatures; and photoperiod sensitivity defining the need for long days to initiate floral transition. Genetic variability in both vernalization and photoperiod sensitivity largely explains the adaptability of cultivated crop plants such as bread wheat (Triticum aestivum L.) to a wide range of climatic conditions. The major genes controlling wheat vernalization (VRN1, VRN2, and VRN3) and photoperiod sensitivity (PPD1) have been identified, and knowledge of their interactions at the molecular level is growing. However, the quantitative effects of temperature and photoperiod on these genes remain poorly understood. Here it is shown that the distinction between the temperature effects on organ appearance rate and on vernalization sensu stricto is crucial for understanding the quantitative effects of the environmental signal on wheat flowering. By submitting near isogenic lines of wheat differing in their allelic composition at the VRN1 locus to various temperature and photoperiod treatments, it is shown that, at the whole-plant level, the vernalization process has a positive response to temperature with complex interactions with photoperiod. In addition, the phenotypic variation associated with the presence of different spring homoeoalleles of VRN1 is not induced by a residual vernalization requirement. The results demonstrate that a precise definition of vernalization is necessary to understand and model temperature and photoperiod effects on wheat flowering. It is suggested that this definition should be used as the basis for gene expression studies and assessment of functioning of the wheat flowering gene network, including an explicit account of the quantitative effect of environmental variables.  相似文献   

2.
Heading time in bread wheat ( Triticum aestivum L.) is determined by three characters – vernalization requirement, photoperiodic sensitivity and narrow-sense earliness (earliness per se) – which are involved in the phase transition from vegetative to reproductive growth. The wheat APETALA1 ( AP1 )-like MADS-box gene, wheat AP1 ( WAP1 , identical with VRN1 ), has been identified as an integrator of vernalization and photoperiod flowering promotion pathways. A MADS-box gene, SUPPRESSOR OF OVEREXPRESSION OF CO 1 ( SOC1 ) is an integrator of flowering pathways in Arabidopsis . In this study, we isolated a wheat ortholog of SOC1 , wheat SOC1 ( WSOC1 ), and investigated its relationship to WAP1 in the flowering pathway. WSOC1 is expressed in young spikes but preferentially expressed in leaves. Expression starts before the phase transition and is maintained during the reproductive growth phase. Overexpression of WSOC1 in transgenic Arabidopsis plants caused early flowering under short-day conditions, suggesting that WSOC1 functions as a flowering activator in Arabidopsis . WSOC1 expression is affected neither by vernalization nor photoperiod, whereas it is induced by gibberellin at the seedling stage. Furthermore, WSOC1 is expressed in transgenic wheat plants in which WAP1 expression is cosuppressed. These findings indicate that WSOC1 acts in a pathway different from the WAP1 -related vernalization and photoperiod pathways.  相似文献   

3.
Wheat is usually classified as a long day (LD) plant because most varieties flower earlier when exposed to longer days. In addition to LD, winter wheats require a long exposure to low temperatures (vernalization) to become competent for flowering. Here we show that in some genotypes this vernalization requirement can be replaced by interrupting the LD treatment by 6 weeks of short day (SD), and that this replacement is associated with the SD down-regulation of the VRN2 flowering repressor. In addition, we found that SD down-regulation of VRN2 at room temperature is not followed by the up-regulation of the meristem identity gene VRN1 until plants are transferred to LD. This result contrasts with the VRN1 up-regulation observed after the VRN2 down-regulation by vernalization, suggesting the existence of a second VRN1 repressor. Analysis of natural VRN1 mutants indicated that a CArG-box located in the VRN1 promoter is the most likely regulatory site for the interaction with this second repressor. Up-regulation of VRN1 under SD in accessions carrying mutations in the CArG-box resulted in an earlier initiation of spike development, compared to other genotypes. However, even the genotypes with CArG box mutations required LD for a normal and timely spike development. The SD acceleration of flowering was observed in photoperiod sensitive winter varieties. Since vernalization requirement and photoperiod sensitivity are ancestral traits in Triticeae species we suggest that wheat was initially a SD–LD plant and that strong selection pressures during domestication and breeding resulted in the modification of this dual regulation. The down-regulation of the VRN2 repressor by SD is likely part of the mechanism associated with the SD–LD regulation of flowering in photoperiod sensitive winter wheat. These authors contributed equally to this work  相似文献   

4.
Time to flowering in the winter growth habit bread wheat is dependent on vernalization (exposure to cold conditions) and exposure to long days (photoperiod). Dominant Vrn-1 (Vrn-A1, Vrn-B1 and Vrn-D1) alleles are associated with vernalization independent spring growth habit. The semidominant Ppd-D1a mutation confers photoperiod-insensitivity or rapid flowering in wheat under short day and long day conditions. The objective of this study was to reveal the nature of interaction between Vrn-1 and Ppd-D1a mutations (active alleles of the respective genes vrn-1 and Ppd-D1b). Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also phenotyped for flowering time by seeding in two different seasons. The wheat lines of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1a, Vrn-A1a Vrn-B1 Ppd-D1a and Vrn-A1a Vrn-D1 Ppd-D1a (or Vrn-1 Ppd-D1a) genotypes flowered several weeks earlier than that of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1b, Vrn-A1b Ppd-D1b and Vrn-D1 Ppd-D1b (or Vrn-1 Ppd-D1b) genotypes. The flowering time phenotypes of the isogenic vernalization-insensitive lines confirmed that Ppd-D1a hastened flowering by several weeks. It was concluded that complementary interaction between Vrn-1 and Ppd-D1a active alleles imparted super/very-early flowering habit to spring wheats. The early and late flowering wheat varieties showed differences in flowering time between short day and long day conditions. The flowering time in Vrn-1 Ppd-D1a genotypes was hastened by higher temperatures under long day conditions. The ambient air temperature and photoperiod parameters for flowering in spring wheat were estimated at 25°C and 12 h, respectively.  相似文献   

5.
The recent whole-plant research reviewed suggests the commonly applied paradigms about vernalization and photoperiodism should be replaced. A simple equation based on new paradigms predictively models with excellent fit the published days to flowering of at least six plant species. The paradigm that the response to photoperiod of the days to flowering (DTF) of crop plants is revealed adequately by comparing a range of photoperiods at just one temperature should be replaced with the following concepts. There is a base (lowest) temperature below which photoperiod gene activity does not occur, and, when the temperature is high enough to allow activity, there is always a photoperiod × temperature × genotype interaction effect on the days to flowering. Similarly, the paradigm that vernalization gene activity occurs at low temperature and promotes development should be replaced as follows. Vernalization gene activity occurs only if the temperature is above a base (lowest) temperature that allows activity of the vernalization gene(s), and this activity delays development to flowering. Development to flowering is accelerated by low-temperature vernalization, because the low temperature prevents vernalization gene activity, thereby preventing delay of the DTF. The phenomena called long-day (LD) vernalization and short-day (SD) vernalization are reinterpreted as follows. The apparent replacement by short or long daylength of a requirement for low-temperature vernalization is actually a replacement by the low temperature of a requirement for long or short day. Just as true low-temperature vernalization results from prevention of vernalization gene activity, these SD and LD promotions of the DTF occur because the photoperiod gene activity is prevented by the low temperature. Rather than requiring an environment that induces flowering, an inherent capability for rapid development to flowering is expressed, if there is no delay of the DTF by the activity of either or both of the vernalization and photoperiod gene(s). All the above-mentioned effects of temperature are due to the Q10 effect on the specified photoperiod or vernalization gene activity. The effect of thermal time (due to the accumulated growing degree days) is the integrated Q10 effect on all additional genes that partially control the rate of development to the reproductive stage.  相似文献   

6.
Many over-wintering plants, through vernalization, overcome a block to flowering and thus acquire competence to flower in the following spring after experiencing prolonged cold exposure or winter cold. The vernalization pathways in different angiosperm lineages appear to have convergently evolved to adapt to temperate climates. Molecular and epigenetic mechanisms for vernalization regulation have been well studied in the crucifer model plant Arabidopsis thaliana.Here, we review recent progresses on the vernalization pathway in Arabidopsis. In addition, we summarize current molecular and genetic understandings of vernalization regulation in temperate grasses including wheat and Brachypodium, two monocots from Pooideae, followed by a brief discussion on divergence of the vernalization pathways between Brassicaceae and Pooideae.  相似文献   

7.
The influence of selected animal steroid sex hormones, on generative development of winter wheat var. Grana was investigated. Wheat plants of this variety necessitate 63-day long vernalization. Mature, isolated embryos of wheat were cultured in vitro on media containing androsterone, androstenedione, estriol, estrone, 17β-estradiol and progesterone in concentrations 10−5 and 10−6 M. They were not vernalized or vernalized for 7, 14, 21 and 28 days (5 °C, 8 h photoperiod). Investigated steroids stimulated the generative development of winter wheat by an increasing in the percentage of heading plants and accelerating the heading. The strongest effect was observed when plants were treated with steroids during the suboptimal, 21 and 28 day, vernalization. After 28 days of vernalization, 100 % heading were observed in plants obtained on the media containing androsterone and androstenedione in concentrations 10−5 and 10−6 M or estrone, 17β-estradiol and progesterone in concentration 10−5 M. Control plants showed only 8 % heading. An erratum to this article is available at .  相似文献   

8.
Heading date is a key trait for the adaptation of barley to Mediterranean environments. We studied the genetic control of flowering time under Northern Spanish (Mediterranean) conditions using a new population derived from the spring/winter cross Beka/Mogador. A set of 120 doubled haploid lines was evaluated in the field, and under controlled temperature and photoperiod conditions. Genotyping was carried out with 215 markers (RFLP, STS, RAPD, AFLP, SSR), including markers for vernalization candidate genes, HvBM5 (Vrn-H1), HvZCCT (Vrn-H2), and HvT SNP22 (Ppd-H1). Four major QTL, and the interactions between them, accounted for most of the variation in both field (71–92%) and greenhouse trials (55–86%). These were coincident with the location of the major genes for response to vernalization and short photoperiod (Ppd-H2 on chromosome 1H). A major QTL, near the centromere of chromosome 2H was the most important under autumn sowing conditions. Although it is detected under all conditions, its action seems not independent from environmental cues. An epistatic interaction involving the two vernalization genes was detected when the plants were grown without vernalization and under long photoperiod. The simultaneous presence of the winter Mogador allele at the two loci produced a marked delay in heading date, beyond a mere additive effect. This interaction, combined with the effect of the gene responsive to short photoperiod, Ppd-H2, was found responsible of the phenomenon known as short-day vernalization, present in some of the lines of the population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.  相似文献   

10.
Winterhardiness has three primary components: photoperiod (day length) sensitivity, vernalization response, and low temperature tolerance. Photoperiod and vernalization regulate the vegetative to reproductive phase transition, and photoperiod regulates expression of key vernalization genes. Using two barley mapping populations, we mapped six individual photoperiod response QTL and determined their positional relationship to the phytochrome and cryptochrome photoreceptor gene families and the vernalization regulatory genes HvBM5A, ZCCT-H, and HvVRT-2. Of the six photoreceptors mapped in the current study (HvPhyA and HvPhyB to 4HS, HvPhyC to 5HL, HvCry1a and HvCry2 to 6HS, and HvCry1b to 2HL), only HvPhyC coincided with a photoperiod response QTL. We recently mapped the candidate genes for the 5HL VRN-H1 (HvBM5A) and 4HL VRN-H2 (ZCCT-H) loci, and in this study, we mapped HvVRT-2, the barley TaVRT-2 ortholog (a wheat flowering repressor regulated by vernalization and photoperiod) to 7HS. Each of these three vernalization genes is located in chromosome regions determining small photoperiod response QTL effects. HvBM5A and HvPhyC are closely linked on 5HL and therefore are currently both positional candidates for the same photoperiod effect. The coincidence of photoperiod-responsive vernalization genes with photoperiod QTL suggests vernalization genes should also be considered candidates for photoperiod effects.  相似文献   

11.
With the aim of dissecting the genetic determinants of flowering time, vernalization response, and photoperiod sensitivity, we mapped the candidate genes for Vrn-H2 and Vrn-H1 in a facultative × winter barley mapping population and determined their relationships with flowering time and vernalization via QTL analysis. The Vrn-H2 candidate ZCCT-H genes were completely missing from the facultative parent and present in the winter barley parent. This gene was the major determinant of flowering time under long photoperiods in controlled environment experiments, irrespective of vernalization, and under spring-sown field experiments. It was the sole determinant of vernalization response, but the effect of the deletion was modulated by photoperiods when the vernalization requirement was fulfilled. There was no effect under short photoperiods. The Vrn-H1 candidate gene (HvBM5A) was mapped based on a microsatellite polymorphism we identified in the promoter of this gene. Otherwise, the HvBM5A alleles for the two parents were identical. Therefore, the significant flowering time QTL effect associated with this locus suggests tight linkage rather than pleiotropy. This QTL effect was smaller in magnitude than those associated with the Vrn-H2 locus and was significant in two-way interactions with Vrn-H2. The Vrn-H1 locus had no effect on vernalization response. Our results support the Vrn-H2/Vrn-H1 repressor/structural gene model for vernalization response in barley and suggest that photoperiod may also affect the Vrn genes or tightly linked loci.  相似文献   

12.
The expected effects of climate change on wheat development   总被引:3,自引:0,他引:3  
Air temperature and the atmospheric concentrations of carbon dioxide are expected to rise. These two factor have a great potential to affect development, growth and yield of crops, including wheat. Rising air temperature may affect wheat development more than rising atmospheric CO2 as there is not yet evidence that elevated CO2 concentrations can directly induce changes in wheat development. In winter wheat, temperature has a complex effect on development due to its strong interaction with vernalization and photoperiod. In this paper, potential effects of rising temperature on the development of winter wheat from sowing to heading are considered in the light of this complex controlling mechanism. Data from a large series of field trials made in Romania is analysed at first and, subsequently, the IATA-Wheat Phenology model is used to calculate the impact of air warming on wheat development under different climate change scenarios. Data from the field trials showed very clearly the occurrence of a complex temperature/photoperiod/vernalization interaction for field sown crops and demostrated that the photoperiodic and vernalization responses have a key role in controlling the duration of the emergence-heading period. Temperature plays, instead, a central role in controlling seed germination and crop emergence as well as leaf inititiation and leaf appearance rate. The results of model analysis showed very well that the impact of an even or uneven distribution of warning effects may be very different. In the first case, the model predicted that the duration of the vegetative period was at least partly reduced in some years. In the second case, the model suggested that if warming will be more pronounced in winter than in spring, as predicted for some areas of the world by General Circulation Models, we may expect an increase in the duration of the vegetative phase of growth. On the contrary, in case of a spring warming but unchanged winter temperatures, we may expect a substantial decrease in the duration of the vegetative period.  相似文献   

13.
Integration of flowering signals in winter-annual Arabidopsis   总被引:12,自引:0,他引:12       下载免费PDF全文
Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay flowering, in part, by suppressing expression of the floral promoter SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1). Vernalization leads to a permanent epigenetic suppression of FLC. To investigate how winter-annual accessions integrate signals from the photoperiod and vernalization pathways, we have examined activation-tagged alleles of FT and the FT homolog, TSF (TWIN SISTER OF FT), in a winter-annual background. Activation of FT or TSF strongly suppresses the FLC-mediated late-flowering phenotype of winter annuals; however, FT and TSF overexpression does not affect FLC mRNA levels. Rather, FT and TSF bypass the block to flowering created by FLC by activating SOC1 expression. We have also found that FLC acts as a dosage-dependent inhibitor of FT expression. Thus, the integration of flowering signals from the photoperiod and vernalization pathways occurs, at least in part, through the regulation of FT, TSF, and SOC1.  相似文献   

14.
Lee I  Amasino RM 《Plant physiology》1995,108(1):157-162
We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecta (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parental ecotypes, Col and Ler, a large decrease in flowering time in response to vernalization was observed only under short-day conditions. However, Sf-2 and the Ler and Col genotypes containing FRI showed a strong response to vernalization when grown in either long days or short days. Although vernalization reduced the responsiveness to photoperiod, plants vernalized for more than 80 d still showed a slight photoperiod response. The effect of FRI on flowering was eliminated by 30 to 40 d of vernalization; subsequently, the response to vernalization in both long days and short days was the same in Col and Ler with or without FRI. FR-light enrichment accelerated flowering in all ecotypes and introgressed lines. However, the FR-light effect was most conspicuous in the FRI-containing plants. Saturation of the vernalization effect eliminated the effect of FR light on flowering, although vernalization did not eliminate the increase of petiole length in FR light.  相似文献   

15.
16.
Limin AE  Fowler DB 《Planta》2006,224(2):360-366
It is frequently observed that winter habit types are more low-temperature (LT) tolerant than spring habit types. This raises the question of whether this is due to pleiotropic effects of the vernalization loci or to the linkage of LT-tolerance genes to these vernalization loci. Reciprocal near-isogenic lines (NILs) for alleles at the Vrn-A1 locus, Vrn-A1 and vrn-A1, determining spring and winter habit respectively, in two diverse genetic backgrounds of wheat (Triticum aestivum L.) were used to separate the effects of vernalization, photoperiod, and development on identical, or near identical, genetic backgrounds. The vrn-A1 allele in the winter lines allowed full expression of genotype dependent LT tolerance potential. The winter allele (vrn-A1) in a very cold tolerant genetic background resulted in 11°C, or a 2.4-fold, greater LT tolerance compared to the spring allele. Similarly, the delay in development caused by short-day (SD) versus long-day (LD) photoperiod in the identical spring habit NIL resulted in an 8.5°C or 2.1-fold, increase in LT tolerance. The duration of time in early developmental stages was shown to underlie full expression of genetic LT-tolerance potential. Therefore, pleiotropic effects of the vernalization loci can explain the association of LT tolerance and winter habit irrespective of either the proposed closely linked Fr-A1 or the more distant Fr-A2 LT-tolerance QTLs. Plant development progressively reduced LT-acclimation ability, particularly after the main shoot meristem had advanced to the double ridge reproductive growth stage. The Vrn-1 genes, or other members of the flowering induction pathway, are discussed as possible candidates for involvement in LT-tolerance repression.  相似文献   

17.
Vernalization is an acceleration of flowering in response to chilling, and is normally studied in the laboratory at near‐freezing (2–4 °C) temperatures. Many vernalization‐requiring species, such as Arabidopsis thaliana, are found in a range of habitats with varying winter temperatures. Natural variation in the temperature range that elicits a vernalization response in Arabidopsis has not been fully explored. We characterized the effect of intermediate temperatures (7–19 °C) on 15 accessions and the well‐studied reference line Col‐FRI. Although progressively warmer temperatures are gradually less effective at activating expression of the vernalization‐specific gene VERNALIZATION‐INSENSITIVE 3 (VIN3) and in accelerating flowering, there is substantial natural variation in the upper threshold (Tmax) of the flowering‐time response. VIN3 is required for the Tmax (13 °C) response of Col‐FRI. Surprisingly, even 16 °C treatment caused induction of VIN3 in six tested lines, despite the ineffectiveness of this temperature in accelerating flowering for two of them. Finally, we present evidence that mild acceleration of flowering by 19 °C exposure may counterbalance the flowering time delay caused by non‐inductive photoperiods in at least one accession, creating an appearance of photoperiod insensitivity.  相似文献   

18.
Vernalization-induced changes of the DNA methylation pattern in winter wheat.   总被引:11,自引:0,他引:11  
Vernalization is a cold treatment that induces or accelerates flowering and insures that temperate-zone plants will not flower until after winter. There is evidence that vernalization results in DNA demethylation that induces flowering. Differences in DNA methylation can be determined using methylation-sensitive amplified fragment length polymorphisms (AFLPs). Methylation-sensitive AFLPs utilize restriction enzyme isoschizomers that are differentially sensitive to methylation, producing polymorphisms related to methylation differences as opposed to sequence differences. Near-isogenic lines (NILs) have been developed for spring vs. winter habit in wheat (Triticum aestivum) and allow for the study of a single vernalization locus. In this study, differences in the methylation pattern were determined for spring and winter NILs, as well as for unvernalized and vernalized individuals. Winter wheat was more highly methylated than spring wheat and methylation-related AFLPs were produced between winter and spring wheat. Changes in the methylation pattern were observed at the end of vernalization, one week after the end of vernalization, and four weeks after the end of vernalization of winter wheat. However, the most methylation differences were observed one week after removal of winter wheat from cold treatment. Our data suggest that there is not only a vernalization-induced demethylation related to flower induction, but there is also a more general and non-specific demethylation of sequences unrelated to flowering. Two methylation-related AFLPs induced by vernalization were shared among all of the winter NILs.  相似文献   

19.
20.
Vernalization is a decisive physiological process for heading, flowering and graining of biennial plants. Variable duration of low-temperature treatment has effects on lateral morphogenesis, such as spike initiation, floral development and graining rate in winter wheat ( Triticum aestivum L.). The investigation data showed that the duration of vernalization treatment was a decisive factor for the initiation of spike relevant to the time of initiation; the longer the duration at low temperature, the earlier the spike initiation in winter wheat. In the process of the spike differentiation, relatively lower temperature and longer differential time benefited for spike differentiation. Under laboratory condition, a low-temperature treatment for 45 d was optial for flower differentiation and graining in winter wheat. It is novelly recognized that vernalization treatment is essential for development of both spikes and spikelets, besides for promoting initiation of differentiation in winter wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号