首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
U1 small nuclear ribonucleoproteins (snRNPs) are required for in vitro splicing of pre-mRNA. Sequences within U1 RNA hybridize to, and thus recognize, 5' splice junctions. We have investigated the mechanism of association of U1 snRNPs with the spliceosome. U1-specific antibodies detected U1 association with precursor RNA early during assembly. Removal of the 5' terminal sequences of U1 RNA by oligo-directed cleavage or removal of U1 snRNPs by immunoprecipitation prior to the addition of precursor RNA depressed the association of all snRNPs with precursor RNA as detected by immunoprecipitation of splicing complexes by either Sm or U1-specific antibodies. Assembly of the spliceosome as monitored by gel electrophoresis was also depressed after cleavage of U1 RNA. The dependency of Sm precipitability of precursor RNA upon the presence of U1 snRNPs suggests that U1 snRNPs participate in the early recognition of substrate RNAs by U2 to U6 snRNPs. Although removal of the 5'-terminal sequences of U1 depressed U1 snRNP association with precursor RNA, it did not eliminate it, suggesting semistable association of U1 snRNPs with the assembling spliceosome in the absence of U1 RNA hybridization. This association was not dependent upon 5' splice junction sequences but was dependent upon 3' intronic sequences, indicating that U1 snRNPs interact with factors recognizing 3' intronic sequences. Mutual dependence of 5' and 3' recognition factors suggests significant snRNP-snRNP communication during early assembly.  相似文献   

2.
A multicomponent complex is involved in the splicing of messenger RNA precursors   总被引:134,自引:0,他引:134  
P J Grabowski  S R Seiler  P A Sharp 《Cell》1985,42(1):345-353
A multicomponent complex termed spliceosome (splicing body) is unique to the splicing of messenger RNA precursors in vitro. This 60S RNA-protein complex contains RNAs from the previously characterized bipartite splicing intermediate, the 5' exon RNA, and the lariat intervening sequence-3' exon RNA, as well as some intact 455 nucleotide precursor RNA. This complex contains snRNPs, particularly U1 RNP, as shown by immunoprecipitation with specific antisera. Formation of the 60S complex appears to be an early and essential step in splicing, because the 60S complex forms during the early stage, or lag time, of the reaction before the first covalent modification, cleavage at the 5' splice site of precursor RNA. The 60S complex forms only under conditions that permit splicing; both ATP and a precursor RNA containing authentic 5' and 3' splice sites are required for formation, while antiserum specific for U1 RNP inhibits its formation. RNA within the 60S complex, predominantly precursor RNA, was chased into products with accelerated kinetics and more complete conversion than purified precursor RNA.  相似文献   

3.
4.
To investigate soluble factors involved in pre-messenger RNA splicing we have fractionated nuclear extract by simple centrifugation to produce a supernatant pellet pair. Factors larger than 15S including U2, U4, U5, and U6 snRNPs fractionate with the pellet; U1 snRNPs distribute equally in pellet and supernatant. Each fraction is individually incompetent for splicing and spliceosome assembly; mixing restores wild type activity and assembly. The pellet fraction directs an aberrant assembly pathway in which proper 3', but improper 5' splice site recognition occurs. Complexes formed with the pellet fraction are distinguishable from wild-type complexes using native gel electrophoresis. Pellet complexes contain U1 snRNP antigens and their formation requires ATP, U1 snRNPs, U2 snRNPs, and sequences at the 3' end of the intron - properties shared with the initial steps of normal assembly and directed by sequences at the 3' end of the intron. In contrast, pellet complex assembly shows no dependence on the presence of a 5' splice junction within precursor RNA. Furthermore, binding of factors to the 5' splice junction is deficient in pellet assemblies. Thus, the pellet lacks a factor required for proper recognition of 5' splice sites. This factor can be supplied by the supernatant. Complementation occurs when supernatant U1 RNA is destroyed, suggesting that the supernatant factor recognizing 5' splice sites is not U1 snRNPs.  相似文献   

5.
Several lines of evidences indicate that U1 and U2 snRNPs become interacting during pre-mRNA splicing. Here we present data showing that an U1-U2 snRNPs interaction can be mediated by an RNA only containing the consensus 5' splice site of all of the sequences characteristic of pre-mRNAs. Using monospecific antibodies (anti-(U1) RNP and anti-(U2) RNP), we have found that a tripartite complex comprising U1 and U2 snRNPs is immunoprecipitated in the presence of a consensus 5' splice site containing RNA, either from a crude extract or from an artificial mixture enriched in U1 and U2 snRNPs. This complex does not appear in the presence of an RNA lacking the sequence complementary to the 5' terminus of U1 snRNA. Moreover, RNAse T1 protection coupled to immunoprecipitation experiments have demonstrated that only the 5' end sequence of U1 snRNA contacts the consensus 5' splice site containing RNA, arguing that U2 snRNP binding in the tripartite complex is mediated by U1 snRNP.  相似文献   

6.
7.
M M Konarska  P A Sharp 《Cell》1987,49(6):763-774
Electrophoretic separation of ribonucleoprotein particles in a nondenaturing gel was used to analyze the splicing of mRNA precursors. Early in the reaction, a complex formed consisting of the U2 small nuclear ribonucleoprotein particle (snRNP) bound to sequences upstream of the 3' splice site. This complex is modeled as a precursor of a larger complex, the spliceosome, which contains U2, U4/6, and U5 snRNPs. Conversion of the U2 snRNP-precursor RNA complex to the spliceosome probably involves binding of a single multi-snRNP particle containing U4/6 and U5 snRNPs. The excised intron was released in a complex containing U5, U6, and probably U2 snRNPs. Surprisingly, U4 snRNP was not part of the intron-containing complex, suggesting that U4/6 snRNP disassembles and assembles during splicing. Subsequently, the reassembled U4/6 snRNP would associate with U5 snRNP and participate in de novo spliceosome formation. U1 snRNP was not detected in any of the splicing complexes.  相似文献   

8.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

9.
10.
M M Konarska  P A Sharp 《Cell》1986,46(6):845-855
Splicing complexes were analyzed by electrophoresis on a native low-percentage polyacrylamide gel. Two distinct heparin-resistant complexes, A and B, are assembled specifically on an RNA precursor containing authentic 5' and 3' splice sites. This assembly is ATP-dependent. Kinetic experiments suggest that complex A is converted with time to a larger, slower migrating complex B. Complexes A and B detected by gel electrophoresis correspond to material sedimenting at 25S and 35S, respectively. Substrate RNA containing only the 3' splice site is capable of forming the smaller complex A but not complex B. Complex A protects sequences upstream of the 3' splice site, encompassing the branch site and polypyrimidine tract from digestion by RNAase T1. U2 snRNA, but not U1 snRNA was detected in both complexes A and B by Northern hybridization analysis. Interestingly, an endogenous large complex containing U2 snRNP could be detected in nuclear extracts.  相似文献   

11.
We have studied the assembly, composition and structure of splicing complexes using biotin-avidin affinity chromatography and RNase protection assays. We find that U1, U2, U4, U5 and U6 snRNPs associate with the pre-mRNA and are in the mature, functional complex. Association of U1 snRNP with the pre-mRNA is rapid and ATP independent; binding of all other snRNPs occurs subsequently and is ATP dependent. Efficient binding of U1 and U2 snRNPs requires a 5' splice site or a 3' splice site/branch point region, respectively. Both sequence elements are required for efficient U4, U5 and U6 snRNP binding. Mutant RNA substrates containing only a 5' splice site or a 3' splice site/branch point region are assembled into 'partial' splicing complexes, which contain a subset of these five snRNPs. RNase protection experiments indicate that in contrast to U1 and U2 snRNPs, U4, U5 and U6 snRNPs do not contact the pre-mRNA. Based upon the time course of snRNP binding and the composition of sucrose gradient fractionated splicing complexes we suggest an assembly pathway proceeding from a 20S (U1 snRNP only) through a 40S (U1 and U2 snRNPs) to the functional 60S splicing complex (U1, U2, U4, U5 and U6 snRNPs).  相似文献   

12.
U1 RNA from cultured Drosophila melanogaster cells (Kc) was identified by its ability to be recognized, as an RNP, by anti-(U1)RNP antibodies from human lupus patients. Its sequence was deduced largely from direct analysis of the RNA molecule and then confirmed by DNA sequence determinations on a genomic clone isolated by hybridization to Drosophila U1 RNA. The Drosophila U1 RNA sequence exhibits 72% agreement with human U1 RNA. Nucleotides 3-11, which are complementary to the entire consensus sequence for donor (5') splice junctions in hnRNA, and to part of the acceptor (3') consensus, are exactly conserved. However, nucleotides 14-21, postulated to interact only with acceptor junctions, differ. Comparison of the Drosophila U1 sequence with vertebrate U1 sequences allows a particular secondary structure model to be preferred over others. These results are consistent with the hypothesis that U1 snRNPs are involved in splicing, but suggest specific modifications of the model detailing molecular interactions between U1 RNA and hnRNA during the splicing reaction.  相似文献   

13.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

14.
15.
Ribonucleoprotein complex formation during pre-mRNA splicing in vitro.   总被引:36,自引:9,他引:27       下载免费PDF全文
The ribonucleoprotein (RNP) structures of the pre-mRNA and RNA processing products generated during in vitro splicing of an SP6/beta-globin pre-mRNA were characterized by sucrose gradient sedimentation analysis. Early, during the initial lag phase of the splicing reaction, the pre-mRNA sedimented heterogeneously but was detected in both 40S and 60S RNP complexes. An RNA substrate lacking a 3' splice site consensus sequence was not assembled into the 60S RNP complex. The two splicing intermediates, the first exon RNA species and an RNA species containing the intron and the second exon in a lariat configuration (IVS1-exon 2 RNA species), were found exclusively in a 60S RNP complex. These two splicing intermediates cosedimented under a variety of conditions, indicating that they are contained in the same RNP complex. The products of the splicing reaction, accurately spliced RNA and the excised IVS1 lariat RNA species, are released from the 60S RNP complex and detected in smaller RNP complexes. Sequence-specific RNA-factor interactions within these RNP complexes were evidenced by the preferential protection of the pre-mRNA branch point from RNase A digestion and protection of the 2'-5' phosphodiester bond of the lariat RNA species from enzymatic debranching. The various RNP complexes were further characterized and could be distinguished by immunoprecipitation with anti-Sm and anti-(U1)RNP antibodies.  相似文献   

16.
17.
18.
Recognition of the 5' splice site is an important step in mRNA splicing. To examine whether U1 approaches the 5' splice site as a solitary snRNP or as part of a multi-snRNP complex, we used a simplified in vitro system in which a short RNA containing the 5' splice site sequence served as a substrate in a binding reaction. This system allowed us to study the interactions of the snRNPs with the 5' splice site without the effect of other cis-regulatory elements of precursor mRNA. We found that in HeLa cell nuclear extracts, five spliceosomal snRNPs form a complex that specifically binds the 5' splice site through base pairing with the 5' end of U1. This system can accommodate RNA-RNA rearrangements in which U5 replaces U1 binding to the 5' splice site, a process that occurs naturally during the splicing reaction. The complex in which U1 and the 5' splice site are base paired sediments in the 200S fraction of a glycerol gradient together with all five spliceosomal snRNPs. This fraction is functional in mRNA spliceosome assembly when supplemented with soluble nuclear proteins. The results argue that U1 can bind the 5' splice site in a mammalian preassembled penta-snRNP complex.  相似文献   

19.
20.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号