首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both thyrotropin (TSH) and epidermal growth factor (EGF) are potent mitogenic agents when added to dog thyroid cells in primary culture [Roger, P. P. and Dumont, J. E. (1984) Mol. Cell. Endocrinol. 36, 79-93]. The concomitant effect of these agents on the differentiation state of the cells was appreciated using cell morphology, iodide trapping, thyroglobulin synthesis and cytoplasmic thyroglobulin mRNA content as markers. Together with previous results [Mol. Cell. Endocrinol. 36, 79-93 (1984)] it is shown that cells cultured in the continuous presence of TSH maintain all the parameters at a near normal level. In the absence of TSH, thyroglobulin mRNA decreased to very low, though still detectable levels. Addition of TSH restored subnormal mRNA levels. Culture of cells in the presence of EGF for 4-6 days affected profoundly their morphology, abolished iodide trapping and decreased thyroglobulin synthesis and cytoplasmic mRNA content to undetectable levels. Addition of TSH to cells previously exposed to EGF reversed the growth factor effect on all four indexes. The redifferentiating effect of TSH was well observed within 3-4 days and was mimicked by the adenylate cyclase activators, forskolin and cholera toxin. When administered simultaneously, TSH and EGF achieved an intermediate situation, EGF antagonizing partially the effect of TSH on the expression of thyroglobulin gene. Another growth factor, fibroblast growth factor, while promoting thyroid cell proliferation also, did not interfere at all with TSH effects on cytoplasmic thyroglobulin mRNA content. Our results make the dog thyroid cell in primary culture an appropriate model to study the mechanisms involved in gene regulation by cyclic AMP and growth factors.  相似文献   

2.
As native thyroglobulin reversibly inhibits TSH-induced cyclic AMP accumulation in cultured thyroid cells, we studied whether the glycosylation of this iodoprotein plays a role in this inhibition. Preincubation with human asialo thyroglobulin and asialo-agalacto thyroglobulin inhibited TSH-stimulated cAMP accumulation after 60 min reaching the maximum after a 120 min. A dose-dependent reduction of cAMP production was found after a 120 min preincubation with graded amounts of asialo and asialo-agalacto thyroglobulin at doses respectively 10 and 200 times lower than native thyroglobulin. Such an inhibitory effect did not appear completely reversible: in fact 90 min after their removal from incubation medium a response to TSH was found to be lower than control.  相似文献   

3.
Freshly isolated porcine thyroid cells were cultured in the presence of highly purified porcine thyrotropin. Cells associate into follicles between the second and tenth day of culture and later form a monolayer. The biological and immunological activity of thyrotropin was measured daily in the media. Thyrotropin concentration and biological activity remained unchanged from the onset of the culture up to day 14. Limiting factors influencing thyroglobulin biosynthesis do not appear before day 13. The loss of follicular organization at day 10 cannot be explained by thyrotropin degradation in the medium. Considering the number of receptors per cell and the half life of the thyrotropin . receptor complex in the two dissociation compartments previously demonstrated, it appears in terms of both biological activity and affinity for the receptors that the thyrotropin molecules released from the first compartment do not differ from native molecules. It can be calculated that at least 31% of the molecules released from the second compartment are not inactivated. Thus, it is probable that the catabolism of thyrotropin on the receptor, or near the receptor site, does not play an important role in the regulation of thyroid cell function in vitro.  相似文献   

4.
Thyroglobulin secreted in the medium by Fisher rat thyroid line-5 (FRTL-5) cells cultured in the presence of thyroid stimulating hormone (TSH) shows a slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a higher density position in a CsCl gradient than thyroglobulin secreted by FRTL-5 cells cultured in the absence of TSH for 5-7 days. Such a TSH effect is much less or not evident when secreted thyroglobulin is digested with peptide N-glycohydrolase F or when intracellular thyroglobulin is compared. Intracellular thyroglobulin migrates faster than thyroglobulin secreted either in the presence or in the absence of TSH. Evaluation of the mannose and galactose content of thyroglobulin demonstrates that intracellular thyroglobulin has more mannose and less galactose than extracellular thyroglobulin; it also shows that TSH decreases the mannose content of thyroglobulin while increasing its galactose content. Bio-Gel P6 chromatography shows that TSH increases the complex type carbohydrate chains while decreasing the high mannose chains in the secreted thyroglobulin. High mannose type oligosaccharides were characterized by fast atom bombardment-mass spectrometry analysis. Treatment with the calcium ionophore A23187 (5 microM) of FRTL-5 cells cultured with or without TSH causes the appearance of a "fast" migrating form of thyroglobulinin in the culture medium. Bio-Gel P6 chromatography shows that A23187 causes a dramatic decrease of the complex carbohydrate chains of the secreted thyroglobulin.  相似文献   

5.
6.
Poly(A)+ mRNA from sheep thyroid total or thyroglobulin-specific polysomes obtained by immunological precipitation, was purified by two cycles of chromatography on oligo(dT)-cellulose. Upon electrophoresis in 98 % formamide-polyacrylamide gels, the purified RNA showed a major species of Mr 2.8×106. The correlation found between the very high concentration of this species and its thyroglobulin messenger activity in the reticulocyte lysate protein synthesis system demonstrates that the thyroglobulin mRNA contains enough bases to code for the thyroglobulin peptide chain (Mr 300 000).  相似文献   

7.
Isolated porcine thyroid cells, cultured in the presence of thyrotropin (greater than or equal to 0.25 mU/ml) or prostaglandin E2 (greater than or equal to 0.1 micron), showed decreased adenosine 3':5'-monophosphate (cyclic AMP) response to further thyrotropin or prostaglandin E2 stimulation, respectively. Kinetics of the refractory process to thyrotropin and prostaglandin E2 are different: (a) maximal refractoriness to prostaglandin E2 was attained after 2--6 h exposure to prostaglandin E2 while refractoriness to thyrotropin was maximal only after 12--24 h; (b) the degree of refractoriness to prostaglandin E2 was much greater than that to thyrotropin. Refractoriness to thyrotropin or prostaglandin E2 is characterized: by specificity for each thyroid stimulator; by dependence upon the dose of thyrotropin or prostaglandin E2 in culture, e.g. induction of high degree of refractoriness with 0.5 mU/ml thyrotropin (or 1 micron prostaglandin E2), which elicits only a small cyclic AMP increase; by time requirement for induction; by partial effect; by changes of maximum activation of cyclic AMP response; by reversibility. This refractoriness of the cyclic AMP response was not induced by dibutyryl adenosine 3':5'-monophosphate. It was not attributed to increased cyclic AMP-phosphodiesterase activity, but to alterations in the receptor-adenylate cyclase system. Prevention of refractoriness to thyrotropin or prostaglandin E2 by incubation of cells in the presence of actinomycin D, puromycin and cycloheximide suggests that new RNA and protein syntheses are required for the development of the refractory state.  相似文献   

8.
Two different independent processes are operating in cultured thyroid cells to regulate adenylate cyclase/cyclic AMP responsiveness to thyroid stimulators (thyrotropin and prostaglandin E2): firstly, refractoriness or negative regulation [preceding paper], which is specific for each thyroid stimulator, is not mediated by cyclic AMP and is not accompanied by alteration of adenylate cyclase activity; secondly, positive regulation which is characterized by an augmentation of the cyclic AMP response stimulated by thyrotropin and prostaglandin E2. This process is not specific for each thyroid stimulator and is a state of increased susceptibility of cyclic AMP synthesis to stimulation, accompanied by increased activity of the catalytic subunit of adenylate cyclase. Positive regulation is apparently mediated by increased intracellular cyclic AMP levels. It is a time-dependent and dose-dependent process. Very low concentrations (5-50 micronU/ml) of thyrotropin augmented cyclic AMP synthesis stimulated by thyrotropin and prostaglandin E2 whereas higher concentrations (above 0.1 mU/ml) augmented prostaglandin E2 stimulation but induced refractoriness to thyrotropin. Prostaglandin E2 (0.1 to 10 micronM) augmented thyrotropin stimulation and dibutyryl adenosine 3':5'-monophosphate (0.3 to 2 mM) augmented thyrotropin and prostaglandin E2 stimulation. Positive regulation is a slow process which develops within days and increases up to day 5 in culture. Experiments using inhibitors suggested that protein synthesis is required for the full expression of the increase in adenylate cyclase activity induced by the studied thyroid stimulators.  相似文献   

9.
The presence of 50 mM nicotinamide together with 100 milliunits/ml of TSH in the incubation medium prevented the decline in human thyroid cell cAMP from maximum, stimulated levels (15-30 min) that occurs when the cells are exposed to TSH alone. Nicotinamide in the absence of TSH did not increase thyroid cell cAMP content. TSH desensitization, and its prevention by nicotinamide, occurred in the presence or absence of 3-isobutyl-methylxanthine. 1-Methyl nicotinamide and N'-methyl nicotinamide similarly prevented TSH desensitization. Recovery from TSH desensitization was prolonged and incomplete after 72 h. The presence of 50 mM nicotinamide hastened recovery from desensitization. Desensitization of the cAMP response to 10(6) M prostaglandin E1 and 1 mM adenosine was unaffected by nicotinamide. Other inhibitors of poly(ADP-ribose) polymerase activity, 5-bromouridine, 5-bromo-2'-deoxyuridine, and thymidine (all at 50 mM) completely or partially prevented TSH desensitization. Pyridoxine (50 mM) similarly prevented this phenomenon. As with dog thyroid cells, 10(-4) M cycloheximide blocked TSH desensitization. The combination of 10(-4) M cycloheximide and 50 mM nicotinamide had a synergistic effect in augmenting the thyroid cell cAMP response to TSH stimulation.  相似文献   

10.
11.
12.
Addition of thyrotropin to cultured human thyroid cells induces a marked increase of the incorporation of (1,3-3H)-glycerol and (1,2-14C)-acetate in the triglycerides. The presence of thyrotropin in the medium does not modify the synthesis of phospholipids from glycerol; however, it may perhaps slightly decrease the incorporation of radioactive acetate in the phospholipids and in cholesterol. The specific radioactivity of the triglycerides remains unchanged after thyrotropin stimulation and the triglycerides'cell content is accordingly greatly increased.  相似文献   

13.
14.
During short term incubations, radioactive arachidonic acid and palmitic acid were incorporated in the cholesteryl ester fraction of the lipids of cultured thyroid cells. Three times more arachidonic than palmitic acid was incorporated and the incorporation of both was dependent upon the culture conditions: the presence of 1 mU/ml thyrotropin in the culture medium during four days almost completely inhibited the subsequent incorporation of the two fatty acids in the cholesteryl ester fraction whereas the total cholesterol and cholesteryl ester content of the cells was not affected.  相似文献   

15.
16.
The involvement of atrial natriuretic peptide (ANP) in the regulation of thyroid gland is supported by the presence of high-affinity ANP receptors and the identification of the peptide in thyroid follicular cells. The aim of this work was to study the action of ANP on parameters of thyroid hormone biosynthesis and analyze the intracellular mechanism of the ANP action in cultured bovine thyroid follicles. The addition of ANP (0.1-10 nM) to the culture medium for 24 h inhibited the TSH (thyroid-stimulating hormone)-stimulated iodide uptake with a maximal inhibition at 1 nM ANP. When thyrocytes were incubated with 10 nM ANP the inhibitory effect slightly increased from 24 to 72 h. Thyroglobulin (Tg) mRNA expression was reduced by 1 and 10 nM ANP. After 24 h of treatment with the cGMP analogue, N(2),2'-O-dibutyrylguanosine 3':5'-cyclic monophosphate [(Bu)(2)cGMP] (0.1 and 1 mM), an inhibition of iodide uptake and Tg mRNA expression was obtained, evidencing a cGMP-mediated inhibitory signal in the thyroid cell. A reduction of the cAMP production was induced by incubation of thyroid follicles with 1 and 10 nM ANP for 24 h. Under a similar treatment the cGMP accumulation was increased only by 10 nM ANP. The inhibitory effect of ANP on Tg mRNA level was reverted in the presence of pertussis toxin, an inhibitor of the G(i)-protein-mediated reduction of the adenylate cyclase activity. These results indicate an inhibitory action of ANP on parameters of thyroid hormone biosynthesis. A G(i)-protein-mediated reduction of the cAMP production seems to be the main factor involved in the ANP action although a role of the cGMP pathway should not be discarded specially at high ANP levels.  相似文献   

17.
The poly A-containing mRNA of cultured hamster (BHK-21) cells has been examined with regard to methylation status. Steady state-labeled mRNA was obtained by incubating cells for 20-22h in the presence of [methyl-3H]-methionine and 32Pi. The degree of methylation of this RNA was 1.8 methyl groups per 1000 nucleotides, or 4-5 methyl groups on the average per molecule. The nature of the methylated residues was determined by paper chromatography and electrophoresis of acid and alkaline hydrolysates, by DEAE cellulose chromatography of alkaline hydrolysates and of T2 RNase digests, and by examining the effect of subjecting samples to "beta-elimination." Approx. half of the methyl groups occurred in standard ("internal") linkage, 10% as m5Cp and 40% as m6Ap residues. The remainder occurred at least for the most part in "blocked" 5'-termini with the presumptive structure m7G(5')ppp(Nm)p.., where Nm was Gm, m6Am, Um, or Cm.  相似文献   

18.
Cultured dog thyroid cells were used to investigate the mechanism by which previous exposure to thyrotropin (TSH) induces refractoriness to further TSH stimulation of cellular adenosine 3'-5'-monophosphate (cAMP). Refractoriness of the cAMP response to TSH could not be overcome by exposure of the cells to supramaximal stimulatory concentrations of TSH. Although an unknown factor present in human and fetal calf serum was found to inhibit the thyroid cell cAMP response to TSH, this factor could not account for refractoriness because refractoriness could be induced in the absence of serum. Induction of thyroid refractoriness did not appear to be related to cellular concentrations of cyclic AMP, because equal refractoriness was produced by TSH alone or TSH plus the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine. In addition, preincubation of thyroid cells in 10(-4) M cAMP did not result in subsequent refractoriness. Recovery from the refractory process required almost 24 h. Short term (15 min) stimulation with TSH did not produce thyroid cell refractoriness, and reversal of the stimulation was obtained by thorough washing of the cells. Long term TSH stimulation (16 h), however, resulted in both supramaximal cAMP response to TSH, and inclusion of TSH together with cycloheximide did not produce refractoriness. Cyclic AMP phosphodiesterase activity in thyroid cell homogenate was unaltered by TSH or dibutyryl cyclic AMP pretreatment of the cells for up to 24 h, or cycloheximide for up to 4 h. In contrast, TSH-stimulated, but not F--stimulated, adenylate cyclase activity was reduced in thyroid cell homogenates after preincubation of the cells in TSH. Refractoriness to TSH stimulation was not associated with an alteration in the binding of 125I-TSH to cultured thyroid cells. These studies suggest that the thyroid cAMP response to TSH is modulated by an inhibitory mechanism dependent upon new protein synthesis. TSH stimulation itself increases the degree of this inhibition through a mechanism not involving cAMP.  相似文献   

19.
20.
The cellular actions of the thyroid hormones L-thyroxine and L-triiodothyronine are mediated by the association of hormone with a chromatin-associated receptor. In cultured GH1 cells, a hormone-responsive rat pituitary cell line, thyroid hormone decreases the concentration of its receptor at early incubation times by reducing the accumulation of newly synthesized receptor. In this study, we demonstrate that cholera toxin also reduces the amount of nuclear receptor in GH1 cells in a time- and dose-dependent fashion, without altering the affinity of the receptor for hormone. The reduction of receptor mediated by cholera toxin is not secondary to a generalized inhibition of cell protein synthesis or cell replication rates and this effect can be abolished by pretreatment of the cholera toxin with soluble ganglioside II3-alpha-N- acetylneuraminosylgangliotetraosylceramide . This effect requires an intact cholera toxin molecule and does not occur at similar concentrations of the membrane-binding B subunit of cholera toxin. In order to study the influence of cholera toxin on thyroid hormone receptor turnover, we have used a dense amino acid-labeling technique. The results indicate that cholera toxin does not change the half-life of receptor, but decreases the rate of appearance of newly synthesized receptor. This decreased rate completely accounts for the lowered steady state receptor levels. The extent of cAMP stimulation by cholera toxin does not correlate with the extent of receptor reduction and forskolin, which stimulates cAMP 25- to 500-fold, does not decrease thyroid hormone receptor abundance. These studies suggest that cholera toxin modulates receptor levels by a mechanism(s) that is not mediated by cAMP in GH1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号