首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冬小麦叶片气孔导度模型水分响应函数的参数化   总被引:2,自引:0,他引:2       下载免费PDF全文
植物气孔导度模型的水分响应函数用来模拟水分胁迫对气孔导度的影响过程, 是模拟缺水环境下植物与大气间水、碳交换过程的关键算法。水分响应函数包括空气湿度响应函数和土壤湿度(或植物水势)响应函数, 该研究基于田间实验观测, 分析了冬小麦(Triticum aestivum)叶片气孔导度对不同空气饱和差和不同土壤体积含水量或叶水势的响应规律。一个土壤水分梯度的田间处理在中国科学院禹城综合试验站实施, 不同水分胁迫下的冬小麦叶片气体交换过程和气孔导度以及其他的温湿度数据被观测, 同时观测了土壤含水量和叶水势。实验数据表明, 冬小麦叶片气孔导度对空气饱和差的响应呈现双曲线规律, 变化趋势显示大约1 kPa空气饱和差是一个有用的阈值, 在小于1 kPa时, 冬小麦气孔导度对空气饱和差变化反应敏感, 而大于1 kPa后则反应缓慢; 分析土壤体积含水量与中午叶片气孔导度的关系发现, 中午叶片气孔导度随土壤含水量增加大致呈现线性增加趋势, 但在平均土壤体积含水量大于大约25%以后, 气孔导度不再明显增加, 而是维持在较高导度值上下波动; 冬小麦中午叶片水势与相应的气孔导度之间, 随着叶水势的增加, 气孔导度呈现增加趋势。根据冬小麦气孔导度对空气湿度、土壤湿度和叶水势的响应规律, 研究分别采用双曲线和幂指数形式拟合了水汽响应函数, 用三段线性方程拟合了土壤湿度响应函数和植物水势响应函数, 得到的参数可以为模型模拟冬小麦的各类水、热、碳交换过程采用。  相似文献   

2.
 Nuclear male sterility within Triticum aestivum is considered as the ideal basis for the development of a hybridization system for wheat. We engineered nuclear male sterility in wheat by introducing the barnase gene under the control of tapetum-specific promoters derived from corn and rice. A biolistic-mediated transformation method, based on the use of the poly(ADP-ribose)polymerase inhibitor niacinamide, was set up which enriched for low-copy integrations (1–3 copies). Most of these copies were not linked and segregated in the next generation. Received: 22 January 1997 / 7 February 1997  相似文献   

3.
Relationships between the chromosomes of Aegilops umbellulata and wheat   总被引:3,自引:0,他引:3  
 A comparative genetic map of Aegilops umbellulata with wheat was constructed using RFLP probes that detect homoeoloci previously mapped in hexaploid bread wheat. All seven Ae. umbellulata chromosomes display one or more rearrangements relative to wheat. These structural changes are consistent with the sub-terminal morphology of chromosomes 2 U, 3 U, 6 U and 7 U. Comparison of the chromosomal locations assigned by mapping and those obtained by hybridization to wheat/Ae. umbellulata single chromosome addition lines verified the composition of the added Ae. umbellulata chromosomes and indicated that no further cytological rearrangements had taken place during the production of the alien-wheat aneuploid lines. Relationships between Ae. umbellulata and wheat chromosomes were confirmed, based on homoeology of the centromeric regions, for 1 U, 2 U, 3 U, 5 U and 7 U. However, homoeology of the centromeric regions of 4 U with wheat group-6 chromosomes and of 6 U with wheat group-4 chromosomes was also confirmed, suggesting that a re-naming of these chromosomes may be pertinent. The consequences of the rearrangements of the Ae. umbellulata genome relative to wheat for gene introgression are discussed. Received: 10 July 1997 / Accepted: 19 September 1997  相似文献   

4.
 We describe the use of wheat microsatellites for the discrimination of Aegilops markgrafii chromosomes. Twenty out of eighty eight wheat microsatellites (WMS) tested were able to distinguish Triticum aestivum-Ae. markgrafii addition lines. Six, three, three, one and six of 18 WMS can be used as markers for single Ae. markgrafii chromosomes B, C, D, F and G, respectively. Addition line A is not available but additional bands, appearing only in Ae. markgrafii and the T. aestivum-Ae. markgrafii amphiploid and not in any of the available addition lines, indicate that three WMS detect markers for Ae. markgrafii chromosomes A. Addition line E could not be detected by any of the WMS markers applied, although the 20 WMS represented all the homologous groups of wheat. All three WMS located on the short arm of group-2 chromosomes were located on Ae. markgrafii chromosome B; three of four WMS, located on the long arm of wheat group-2 chromosomes, were specific to Ae. markgrafii chromosome G and three of four WMS, specific to group-5 chromosomes, were markers for Ae. markgrafii chromosome C, indicating the homoeology of these wheat chromosome arms with the respective Ae. markgrafii chromosomes. Received: 29 May 1997 / Accepted: 10 September 1997  相似文献   

5.
Domestication and crop physiology: roots of green-revolution wheat   总被引:7,自引:1,他引:6  
Waines JG  Ehdaie B 《Annals of botany》2007,100(5):991-998
BACKGROUND AND AIMS: Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and 'Veery'-type wheat containing the 1RS translocation from rye. METHODS: Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. KEY RESULTS: The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F(2) of 'Norin 10' and 'Brevor', further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat-rye translocation in 'Kavkaz' for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. CONCLUSIONS: Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters.  相似文献   

6.
 Flag-leaf angle (FLAngle), flag-leaf area (FLarea) and flag-leaf area duration (FLADuration) are important traits in determining yield in wheat (Triticum aestivum L). Genetic studies on these traits are very few. The objective of this study was to determine the gene action controlling those traits in four wheat crosses. Six generations were available for each cross: parents (P1 and P2), F1, F2 and backcrosses (BC(F1×P1) and BC(F1×P2)). The joint scaling test described by Mather and Jinks was used to test goodness of fit to eight genetic models. Models including additivity, dominance and interallelic interactions best fitted the data for the three traits and the four crosses. Additive effects were most prevalent for FLAngle. They were also significant for FLArea and FLADuration. Dominance and epistatic gene action were also found, but the degree and direction was both trait- and genotype-specific. Heritabilities values were intermediate. Genetic progress, although slow, can be expected when selecting for these traits; however, selection would be most effective if delayed to later generations because of dominance and epistatic effects. Received: 20 April 1998 / Accepted: 14 July 1998  相似文献   

7.
BACKGROUND AND AIMS: The production of axillary shoots (tillering) in spring wheat (Triticum aestivum) depends on intraspecific competition. The mechanisms that underlie this competition are complex, but light within the wheat canopy plays a key role. The main objectives of this paper are to analyse the effects of plant population density and shade on tillering dynamics of spring wheat, to assess the canopy conditions quantitatively at the time of tillering cessation, and to analyse the relationship between the tiller bud and the leaf on the same phytomer. METHODS: Spring wheat plants were grown at three plant population densities and under two light regimes (25 % and 100 % light). Tiller appearance, fraction of the light intercepted, and red : far-red ratio at soil level were recorded. On six sampling dates the growth status of axillary buds was analysed. KEY RESULTS: Tillering ceased earlier at high population densities and ceased earlier in the shade than in full sunlight. At cessation of tillering, both the fraction of light intercepted and the red : far-red ratio at soil level were similar in all treatments. Leaves on the same phytomer of buds that grew out showed more leaf mass per unit area than those on the same phytomer of buds that remained dormant. CONCLUSIONS: Tillering ceases at specific light conditions within the wheat canopy, independent of population density, and to a lesser extent independent of light intensity. It is suggested that cessation of tillering is induced when the fraction of PAR intercepted by the canopy exceeds a specific threshold (0.40-0.45) and red : far-red ratio drops below 0.35-0.40.  相似文献   

8.
 We are reporting the successful isolation of wheat chromosome arm 1DS by flow cytometry. A chromosome suspension was prepared for the 1DS ditelosomic line and the normal ‘Chinese Spring’ (CS) by chopping 2-day-old root tip meristems, synchronized by hydroxyurea, in HEPES-magnesium sulfate buffer containing propidium iodide. Chromosomes were analyzed and sorted with a FACS Vantage flow cytometer and cell sorter. An extra peak was observed in the flow karyotype of the ditelosomic line that was absent in ‘CS’. The estimated size of chromosomes from the extra peak matched with the expected size of chromosome 1DS. Chromosomes from the putative 1DS peak were analyzed by both fluorescent microscopy and N-banding analysis. A total of 571 chromosomes from two separate experiments were analyzed, and all were observed to be telosomics except for 2 which were broken. About 82% of these telosomics showed the diagnostic N-band of 1DS, the remaining were unbanded and are probably also 1DS. This strategy can also be used to sort other wheat arms. Received: 30 September 1998 / Accepted: 2 November 1998  相似文献   

9.
Extended physical maps of chromosomes 6A, 6B and 6D of common wheat (Triticum aestivum L. em Thell., 2n=6x=42, AABBDD) were constructed with 107 DNA clones and 45 homoeologous group-6 deletion lines. Two-hundred and ten RFLP loci were mapped, including three orthologous loci with each of 34 clones, two orthologous loci with each of 31 clones, one locus with 40 clones, two paralogous loci with one clone, and four loci, including three orthologs and one paralog, with one clone. Fifty five, 74 and 81 loci were mapped in 6A, 6B and 6D, respectively. The linear orders of the mapped orthologous loci in 6A, 6B and 6D appear to be identical and 65 loci were placed on a group-6 consensus physical map. Comparison of the consensus physical map with eight linkage maps of homoeologous group-6 chromosomes from six Triticeaespecies disclosed that the linear orders of the loci on the maps are largely, if not entirely, conserved. The relative distributions of loci on the physical and linkage maps differ markedly, however. On most of the linkage maps, the loci are either distributed relatively evenly or clustered around the centromere. In contrast, approximately 90% of the loci on the three physical maps are located either in the distal one-half or the distal two-thirds of the six chromosome arms and most of the loci are clustered in two or three segments in each chromosome. Received: 19 April 1999 / Accepted: 28 July 1999  相似文献   

10.
The possibility of controlling wheat scab (caused by Fusarium graminearum Schw.) was explored by engineering wheat plants for constitutive expression of pathogenesis-related (PR) protein genes. A rice thaumatin-like protein (TLP) gene (tlp) and a rice chitinase gene (chi11) were introduced into the spring wheat cultivar ’Bobwhite’ by co-transformation of the plasmids pGL2ubi-tlp (ubiquitin/tlp//CaMV 35S/hpt) and pAHG11 (CaMV 35S/chi11//ubiquitin/bar). The transformation was by biolistic bombardment. Bialaphos was used as the selection reagent. The integration and expression of the tlp, bar, chi11 and hpt genes were analyzed by Southern, Northern and Western blot analyses. The four transgenes co-segregated in the T1 progeny of the transgenic plant and were localized at the telomeric region of the chromosome 6A long arm by sequential N-banding and fluorescent in situ hybridization (FISH) using pAHG11 or pGL2ubi-tlp as the probes. Only the transgenes tlp and bar, under the control of the ubiquitin promoter-intron, were expressed. No expression of the chi11 and hpt genes, controlled by the CaMV 35S promoter, was detected in T1 plants. After inoculation with conidia of F. graminearum, the symptoms of scab developed significantly slower in transgenic plants of the T1, T2 and T3 generations expressing the tlp gene than in non-transformed control plants. This is the first report of enhanced resistance to F. graminearum in transgenic wheat plants with constitutive expression of TLP. Received: 15 December 1998 / Accepted: 30 January 1999  相似文献   

11.
BACKGROUND AND AIMS: There are three reasons for the increasing demand for crop models that build the plant on the basis of architectural principles and organogenetic processes: (1) realistic concepts for developing new crops need to be guided by such models; (2) there is an increasing interest in crop phenotypic plasticity, based on variable architecture and morphology; and (3) engineering of mechanized cropping systems requires information on crop architecture. The functional-structural model GREENLAB was recently presented that simulates resource-dependent plasticity of plant architecture. This study introduces a new methodology for crop parameter optimization against measured data called multi-fitting, validates the calibrated model for maize with independent field data, and describes a technique for 3D visualization of outputs. METHODS: Maize was grown near Beijing during the 2000, 2001 and 2003 (two sowing dates) summer seasons in a block design with four to five replications. Detailed morphological and topological observations were made on the plant architecture throughout the development of the four crops. Data obtained in 2000 was used to establish target files for parameter optimization using the generalized least square method, and parameter accuracy was evaluated by coefficient of variance. In situ plant digitization was used to establish 3D symbol files for organs that were then used to translate model outputs directly into 3D representations for each time step of model execution. KEY RESULTS AND CONCLUSIONS: Multi-fitting against several target files obtained at different growth stages gave better parameter accuracy than single fitting at maturity only, and permitted extracting generic organ expansion kinetics from the static observations. The 2000 model gave excellent predictions of plant architecture and vegetative growth for the other three seasons having different temperature regimes, but predictions of inter-seasonal variability of biomass partitioning during grain filling were less accurate. This was probably due to insufficient consideration of processes governing cob sink size and terminal leaf senescence. Further perspectives for model improvement are discussed.  相似文献   

12.
Minibayeva F  Mika A  Lüthje S 《Protoplasma》2003,221(1-2):67-72
Summary.  Wheat (Triticum aestivum L.) roots released proteins showing peroxidase activity in the apoplastic solution in response to wound stress. Preincubation of excised roots with 1 mM salicylic acid at pH 7.0 enhanced the guaiacol peroxidase activity of the extracellular solution (so-called extracellular peroxidase). The soluble enzymes were partially purified by precipitation with ammonium sulfate followed by size exclusion and ion exchange chromatography. Despite an increase in the total activity of secreted peroxidase induced by pretreatment of excised roots with salicylic acid, the specific activity of the partially purified protein was significantly lower compared to that of the control. Purification of the corresponding proteins by ion exchange chromatography indicates that several isoforms of peroxidase occurred in both control and salicylic acid-treated samples. The activities of the extracellular peroxidases secreted by the salicylic acid-treated roots responded differently to calcium and lectins compared with those from untreated roots. Taken together, our data suggest that salicylic acid changes the isoforms of peroxidase secreted by wounded wheat roots. Received June 10, 2002; accepted September 24, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.  相似文献   

13.
A set of 187 doubled haploid lines derived from the cross between cvs. Courtot and Chinese Spring was explored for QTLs for three bread-making quality tests: hardness, protein content and strength of the dough (W of alveograph). The scores of the parental lines were quite different except for protein content, and the population showed a wide range of variation. About 350 molecular and biochemical markers were used to establish the genetic map, and technological criteria were evaluated in 1 to 3 years. QTL detection was performed by the ”marker regression” method. The most significant unlinked markers were used in the model as covariates, and the results were tested by bootstrap resampling. For hardness, we confirmed a previously tagged major QTL on chromosome 5DS, and two additional minor QTLs were found on chromosome 1A and 6D, respectively. For protein content two main QTLs were identified on chromosomes 1B and 6A, respectively. For W, three consistent QTLs were detected: two at the same location as those for hardness, on chromosomes 1A and 5D; the third one on chromosome 3B. Therefore, it appeared that except for the Glu-1A locus, storage protein loci were not clearly involved in the genetic control of the criteria studied in the present work. Despite the reasonable size of the population no QTL with interactive effects could be substantially established as measured. All computations were carried out using home-made programmes in Splus language, and these are available upon request. Received: 16 May 1999 / Accepted: 15 October 1999  相似文献   

14.
The present work reports new PCR markers that amplify the complete coding sequence of the specific alleles of the high molecular weight (HMW) glutenin genes. A set of AS-PCR molecular markers was designed which use primers from nucleotide sequences of the Glu-A1 and Glu-D1 genes, making use of the minor diffeences between the sequences of the x1, x2* of Glu-A1, and the x5 and y10 of Glu-D1. These primers were able to distinguish between x2* and the x1 or xNull of Glu-A1. Also x5 was distinguishable from x2, and y10 from y12. The primers amplified the complete coding regions and corresponded to the upstream and downstream flanking positions of Glu-A1 and Glu-D1. Primers designed to amplify the Glu-A1 gene amplified a single product when used with genomic DNA of common wheats and the xNull allele of this gene. This work also describes the cloning and characterisation of the nucleotide sequence of this allele. It possesses the same general structure as x2* and x1 (previously determined) and differs from these alleles in the extension of the coding sequence for a presumptive mature protein with only 384 residues. This is due to the presence of a stop codon (TAA) 1215-bp downstream from the start codon. A further stop codon (TAG), 2280-bp downstream from the starting codon is also found. The open reading frame of xNull and x1 alleles has the same size in bp. Both are larger than x2* which shows two small deletions. The reduced size of the presumptive mature protein encoded by xNull could explain the negative effect of this allele on grain quality. Received: 16 May 1999 / Accepted: 16 September 1999  相似文献   

15.
Chlorotoluron is a selective phenylurea herbicide widely used for broad-leaved and annual grass weed control in cereals. Variation in the response to chlorotoluron (CT) was found in both hexaploid bread wheat (Triticum aestivum L.) and wild tetraploid wheat (Triticum dicoccoides KöRN.). Here, we describe the comparative mapping of the CT resistance gene (Su1) on chromosome 6B in bread and wild wheat using RFLP markers. In bread wheat, mapping was based on 58 F4 single-seed descent (SSD) plants of the cross between a genotype sensitive to chlorotoluron, ‘Chinese Spring’ (CS), and a resistant derivative, the single chromosome substitution line, CS (‘Cappele-Desprez’ 6B) [CS (CAP6B). In T dicoccoides, mapping was based on 37 F2 plants obtained from the cross between the CT-susceptible accession B-7 and the resistant accession B-35. Nine RFLP probes spanning the centromere were chosen for mapping. In bread wheat Su1 was found to be linked to α-Amy-1 (9.84 cM) and Xpsr371 (5.2 cM), both on the long arm of 6B, and Nor2 (2.74 cM) on the short arm. In wild wheat the most probable linkage map was Nor2-Xpsr312-Su1-Pgk2, and the genetic distances between the genes were 24.8cM, 5.3cM, and 6.8cM, respectively. These results along with other published map data indicate that the linear order of the genes is similar to that found in T. aestivum. The results of this study also show that the Su1 gene for differential response to chlorotoluron has evolved prior to the domestication of cultivated wheat and not in response to the development and use of chemicals.  相似文献   

16.
 Conversion of amplified fragment length polymorphisms (AFLPs) to sequence-specific PCR primers would be useful for many genetic-linkage applications. We examined 21 wheat nullitetrasomic stocks and five wheat-barley addition lines using 12 and 14 AFLP primer combinations, respectively. On average, 36.8% of the scored AFLP fragments in the wheat nullitetrasomic stocks and 22.3% in the wheat-barley addition lines could be mapped to specific chromosomes, providing approximately 461 chromosome-specific AFLP markers in the wheat nullitetrasomic stocks and 174 in the wheat-barley addition lines. Ten AFLP fragments specific to barley chromosomes and 16 AFLP fragments specific to wheat 3BS and 4BS chromosome arms were isolated from the polyacrylamide gels, re-amplified, cloned and sequenced. Primer sets were designed from these sequences. Amplification of wheat and barley genomic DNA using the barley derived primers revealed that three primer sets amplified DNA from the expected chromosome, five amplified fragments from all barley chromosomes but not from wheat, one amplified a similar-sized fragment from multiple barley chromosomes and from wheat, and one gave no amplification. Amplification of wheat genomic DNA using the wheat-derived primer sets revealed that three primer sets amplified a fragment from the expected chromosome, 11 primer sets amplified a similar-sized fragment from multiple chromosomes, and two gave no amplification. These experiments indicate that polymorphisms identified by AFLP are often not transferable to more sequence-specific PCR applications. Received: 30 June 1998 / Accepted: 26 October 1998  相似文献   

17.
18.
Clusters of four simple sequence repeats (SSRs), AAC, AAG, AG and CAT, have been mapped physically to hexaploid wheat chromosomes; 15—24-bp synthetic oligonucleotides were labelled by random-primer labelling and used as probes for fluorescent in situ hybridization with standard formamide and low-salt conditions. AAC hybridized strongly to the pericentromeric regions and several intercalary sites of all seven chromosomes of the B-genome corresponding to N bands and enabling their identification. Most of the AAC sites also co-localize with AAG, although the strength of the AAC and AAG signal was often different at the same location. Not all heterochromatic bands showed AAC signals and a few AAC sites were detected that are neither AAG nor N band positive, revealing the complex and heterogeneous genome organization of wheat and identifying the four most frequent classes of banded chromatin. Clusters characterised by a high concentration of AG repeats were detected on chromosome arms 3BS, 4BL, 5BS and 5BL, adjacent to AAG sites. The only detectable CAT cluster was found on chromosome arm 3BL, making this oligonucleotide valuable in identifying this particular chromosome. SSR in situ hybridization is useful as a diagnostic tool in cytogenetics and for understanding genome organization in wheat. Received: 21 September 1999 / Accepted: 19 March 2000  相似文献   

19.
 Chinese wheat landrace Chiyacao exhibited a response pattern different from that of the cultivars/lines possessing documented Pm genes after inoculation with 106 isolates of Erysiphe graminis f. sp. tritici. To characterize this resistance and to determine the chromosomal location of the gene or genes present, we crossed the landrace to susceptible cultivar ‘Chinese Spring’ and also to a set of 21 ‘Chinese Spring’ monosomic lines. Monosomic F1 plants were allowed to self-pollinate and to produce F2 seeds. Seedlings of F2 plants and their parents were inoculated with isolates nos. 5 and 12 of Erysiphe graminis f. sp. tritici. The results revealed that one major dominant gene is located on chromosome 6D of Chinese common wheat landrace Chiyacao. The new gene is designated Pm 24. Received: 12 May 1997 / Accepted: 23 May 1997  相似文献   

20.
Fusarium head blight (FHB, scab) is a fungal disease of wheat and other small cereals that is found in both temperate and semi-tropical regions. FHB causes severe yield and quality losses, but the most-serious concern is the possible mycotoxin contamination of cereal food and feed. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. This study was conducted to identify and map DNA markers associated with FHB resistance genes in wheat. A population of 364 F1-derived doubled-haploid (DH) lines from the cross ’CM-82036’ (resistant)/’Remus’ (susceptible) was evaluated for Type II resistance (spread within the spike) during 2 years under field conditions. Marker analysis was performed on 239 randomly chosen DH lines. Different marker types were applied, with an emphasis on AFLP and SSR markers. Analysis of variance, as well as simple and composite interval mapping, were applied. Three genomic regions were found significantly associated with FHB resistance. The most-prominent effect was detected on the short arm of chromosome 3B, explaining up to 60% of the phenotypic variance for Type II FHB resistance. A further QTL was located on chromosome 5A and a third one on 1B. The QTL regions on 3B and 5A were tagged with flanking SSR markers, the 1B QTL was found associated with the high-molecular-weight glutenin locus. These results indicate that FHB resistance is under control of a few major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these major QTLs involved in FHB resistance appears feasible and should accelerate the development of resistant and agronomically improved wheat cultivars. Received: 25 January 2001 / Accepted: 18 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号