首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.  相似文献   

2.
Spindle assembly is essential for the equal distribution of genetic material to the daughter cells during mitosis. The process of spindle assembly is complicated and involves multiple levels of molecular regulation. It is generally accepted that mitotic spindles are emanated from the centrosomes and are assembled in the vicinity of chromosomes. However, the molecular mechanism involved in the spindle assembly during mitosis remains unclear. In this study, we have provided several lines of evidence to show that Drosophila Mars is required for the assembly and stabilization of kinetochore microtubules. In an immunocytochemical study, we show that Mars is mainly localized on the kinetochore microtubules during mitosis. Using RNA interference to deplete the Mars expression in Drosophila S2 cells resulted in the malformation of mitotic spindle that mainly lacked the kinetochore microtubules. The spindle defect resulted in mitotic delays by increasing the percentage of uncongressed chromosomes both in vitro and in vivo. In summary, this study has extended our previous study of Mars in cell cycle regulation and provided further evidence showing that Mars is required for the assembly of kinetochore microtubules.  相似文献   

3.
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.  相似文献   

4.
The proper segregation of chromosomes during meiosis or mitosis requires the assembly of well organized spindles. In many organisms, meiotic spindles lack centrosomes. The formation of such acentrosomal spindles seems to involve first assembly or capture of microtubules (MTs) in a random pattern around the meiotic chromosomes and then parallel bundling and bipolar organization by the action of MT motors and other proteins. Here, we describe the structure, distribution, and function of KLP-18, a Caenorhabditis elegans Klp2 kinesin. Previous reports of Klp2 kinesins agree that it concentrates in spindles, but do not provide a clear view of its function. During prometaphase, metaphase, and anaphase, KLP-18 concentrates toward the poles in both meiotic and mitotic spindles. Depletion of KLP-18 by RNA-mediated interference prevents parallel bundling/bipolar organization of the MTs that accumulate around female meiotic chromosomes. Hence, meiotic chromosome segregation fails, leading to haploid or aneuploid embryos. Subsequent assembly and function of centrosomal mitotic spindles is normal except when aberrant maternal chromatin is present. This suggests that although KLP-18 is critical for organizing chromosome-derived MTs into a parallel bipolar spindle, the order inherent in centrosome-derived astral MT arrays greatly reduces or eliminates the need for KLP-18 organizing activity in mitotic spindles.  相似文献   

5.
We describe the molecular characterization of zyg-9, a maternally acting gene essential for microtubule organization and function in early Caenorhabditis elegans embryos. Defects in zyg-9 mutants suggest that the zyg-9 product functions in the organization of the meiotic spindle and the formation of long microtubules. One-cell zyg-9 embryos exhibit both meiotic and mitotic spindle defects. Meiotic spindles are disorganized, pronuclear migration fails, and the mitotic apparatus forms at the posterior, orients incorrectly, and contains unusually short microtubules. We find that zyg-9 encodes a component of the meiotic and mitotic spindle poles. In addition to the strong staining of spindle poles, we consistently detect staining in the region of the kinetochore microtubules at metaphase and early anaphase in mitotic spindles. The ZYG-9 signal at the mitotic centrosomes is not reduced by nocodazole treatment, indicating that ZYG-9 localization to the mitotic centrosomes is not dependent upon long astral microtubules. Interestingly, in embryos lacking an organized meiotic spindle, produced either by nocodazole treatment or mutations in the mei-1 gene, ZYG-9 forms a halo around the meiotic chromosomes. The protein sequence shows partial similarity to a small set of proteins that also localize to spindle poles, suggesting a common activity of the proteins.  相似文献   

6.
Recent results challenge long-held assumptions that centrosomes are essential organizers of mitotic spindles, but suggest that they couple spindle behavior with developmental and cellular events, perhaps by nucleating astral microtubules which mediate interactions with other cytoskeletal components.  相似文献   

7.
In animal and yeast cells, the mitotic spindle is aligned perpendicularly to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring. In fission yeast, spindle rotation is dependent upon the interaction of astral microtubules with the cortical actin cytoskeleton. In this article, we show that addition of Latrunculin A, which prevents spindle rotation, delays the separation of sister chromatids and anaphase promoting complex-mediated destruction of spindle-associated Securin and Cyclin B. Moreover, we find that whereas sister kinetochore pairs normally congress to the spindle midzone before anaphase onset, this congression is disrupted when astral microtubule contact with the actin cytoskeleton is disturbed. By analyzing the timing of kinetochore separation, we find that this anaphase delay requires the Bub3, Mad3, and Bub1 but not the Mad1 or Mad2 spindle assembly checkpoint proteins. In agreement with this, we find that Bub1 remains associated with kinetochores when spindles are mispositioned. These data indicate that, in fission yeast, astral microtubule contact with the medial cell cortex is monitored by a subset of spindle assembly checkpoint proteins. We propose that this checkpoint ensures spindles are properly oriented before anaphase takes place.  相似文献   

8.
gamma-Tubulin is a ubiquitous and highly conserved component of centrosomes in eukaryotic cells. Genetic and biochemical studies have demonstrated that gamma-tubulin functions as part of a complex to nucleate microtubule polymerization from centrosomes. We show that, as in other organisms, Caenorhabditis elegans gamma-tubulin is concentrated in centrosomes. To study centrosome dynamics in embryos, we generated transgenic worms that express GFP::gamma-tubulin or GFP::beta-tubulin in the maternal germ line and early embryos. Multiphoton microscopy of embryos produced by these worms revealed the time course of daughter centrosome appearance and growth and the differential behavior of centrosomes destined for germ line and somatic blastomeres. To study the role of gamma-tubulin in nucleation and organization of spindle microtubules, we used RNA interference (RNAi) to deplete C. elegans embryos of gamma-tubulin. gamma-Tubulin (RNAi) embryos failed in chromosome segregation, but surprisingly, they contained extensive microtubule arrays. Moderately affected embryos contained bipolar spindles with dense and long astral microtubule arrays but with poorly organized kinetochore and interpolar microtubules. Severely affected embryos contained collapsed spindles with numerous long astral microtubules. Our results suggest that gamma-tubulin is not absolutely required for microtubule nucleation in C. elegans but is required for the normal organization and function of kinetochore and interpolar microtubules.  相似文献   

9.
Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we demonstrate that NuMA is an essential mitotic component with distinct contributions to the establishment and maintenance of focused spindle poles. When mitotic NuMA function is disrupted, centrosomes provide initial focusing activity, but continued centrosome attachment to spindle fibers under tension is defective, and the maintenance of focused kinetochore fibers at spindle poles throughout mitosis is prevented. Without centrosomes and NuMA, initial establishment of spindle microtubule focusing completely fails. Thus, NuMA is a defining feature of the mammalian spindle pole and functions as an essential tether linking bulk microtubules of the spindle to centrosomes.  相似文献   

10.
We tested the ability of chromosomes in a mitotic cytoplasm to organize a bipolar spindle in the absence of centrosomes. Sea urchin eggs were treated with 5 X 10(-6) colcemid for 7-9 min before fertilization to block future microtubule assembly. Fertilization events were normal except that a sperm aster was not formed and the pronuclei remained up to 70 microns apart. After nuclear envelope breakdown, individual eggs were irradiated with 366-nm light to inactivate photochemically the colcemid. A functional haploid bipolar spindle was immediately assembled in association with the male chromosomes. In contrast to the male pronucleus, the female pronucleus in most of these eggs remained as a small nonbirefringent hyaline area throughout mitosis. High-voltage electron microscopy of serial semithick sections from individual eggs, previously followed in vivo, revealed that the female chromosomes were randomly distributed within the remnants of the nuclear envelope. No microtubules were found in these pronuclear areas even though the chromosomes were well-condensed and had prominent kinetochores with well-developed coronas. In the remaining eggs, a weakly birefringent monaster was assembled in the female pronuclear area. These observations demonstrate that chromosomes in a mitotic cytoplasm cannot organize a bipolar spindle in the absence of a spindle pole or even in the presence of a monaster. In fact, chromosomes do not even assemble kinetochore microtubules in the absence of a spindle pole, and kinetochore microtubules form only on kinetochores facing the pole when a monaster is present. This study also provides direct experimental proof for the longstanding paradigm that the sperm provides the centrosomes used in the development of the sea urchin zygote.  相似文献   

11.
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.  相似文献   

12.
Unfertilized eggs usually lack maternal centrosomes and cannot develop without sperm contribution. However, several insect species lay eggs that develop to adulthood as unfertilized in the absence of a preexisting centrosome. We report that the oocyte of the parthenogenetic viviparous pea aphid Acyrthosiphon pisum is able to self-organize microtubule-based asters, which in turn interact with the female chromatin to form the first mitotic spindle. This mode of reproduction provides a good system to investigate how the oocyte can assemble new centrosomes and how their number can be exactly monitored. We propose that the cooperative interaction of motor proteins and randomly nucleated surface microtubules could lead to the formation of aster-like structures in the absence of pre-existing centrosomes. Recruitment of material along the microtubules might contribute to the accumulation of pericentriolar material and centriole precursors at the focus of the asters, thus leading to the formation of true centrosomes. The appearance of microtubule asters at the surface of activated oocytes could represent a possible common mechanism for centrosome formation during insect parthenogenesis.  相似文献   

13.
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.  相似文献   

14.
It is now clear that a centrosome-independent pathway for mitotic spindle assembly exists even in cells that normally possess centrosomes. The question remains, however, whether this pathway only activates when centrosome activity is compromised, or whether it contributes to spindle morphogenesis during a normal mitosis. Here, we show that many of the kinetochore fibers (K-fibers) in centrosomal Drosophila S2 cells are formed by the kinetochores. Initially, kinetochore-formed K-fibers are not oriented toward a spindle pole but, as they grow, their minus ends are captured by astral microtubules (MTs) and transported poleward through a dynein-dependent mechanism. This poleward transport results in chromosome bi-orientation and congression. Furthermore, when individual K-fibers are severed by laser microsurgery, they regrow from the kinetochore outward via MT plus-end polymerization at the kinetochore. Thus, even in the presence of centrosomes, the formation of some K-fibers is initiated by the kinetochores. However, centrosomes facilitate the proper orientation of K-fibers toward spindle poles by integrating them into a common spindle.  相似文献   

15.
Observations on living mitotic cells have suggested that material in the spindle moves poleward during mitosis. In order to investigate this movement, sea urchin eggs have been microinjected with 0.25-micron diameter carboxylated fluorescent beads. When fluorescent beads were injected into unfertilized Lytechinus variegatus eggs, no motility was detected. When injected into mitotic cells, beads moved to the spindle poles. Individual beads moved rapidly, in a saltatory fashion, and followed generally linear paths. Beads appeared to move along astral fibers, were generally excluded from the spindle proper, and accumulated at the spindle poles. Some dispersion of the beads away from the pole was observed as cells completed mitosis, but the majority of beads retained a polar location. After depolymerization of spindle microtubules with nocodazole, some dispersion of beads into the cytoplasm was also observed. Beads moved along taxol-induced astral microtubules and accumulated at astral centers. These observations reveal that negatively charged beads accumulate rapidly at mitotic centers, moving toward the minus end of the microtubules. Neither the bidirectional motility of similar beads in interphase cells nor the plus-end-directed bead motility seen in axons was observed in these mitotic cells.  相似文献   

16.
Assembly of the mitotic spindle is a classic example of macromolecular self-organization. During spindle assembly, microtubules (MTs) accumulate around chromatin. In centrosomal spindles, centrosomes at the spindle poles are the dominating source of MT production. However, many systems assemble anastral spindles, i.e., spindles without centrosomes at the poles. How anastral spindles produce and maintain a high concentration of MTs in the absence of centrosome-catalyzed MT production is unknown. With a combined biochemistry-computer simulation approach, we show that the concerted activity of three components can efficiently concentrate microtubules (MTs) at chromatin: (1) an external stimulus in form of a RanGTP gradient centered on chromatin, (2) a feed-back loop where MTs induce production of new MTs, and (3) continuous re-organization of MT structures by dynamic instability. The mechanism proposed here can generate and maintain a dissipative MT super-structure within a RanGTP gradient.  相似文献   

17.
T-1 induces modifications in the shape of the centrosome at division in fertilized eggs of the North American sea urchin, Lytechinus pictus. Phase contrast microscopy observations of mitotic apparatus isolated from T-1-treated (1.7-8.5 microM) eggs at first division shows that the centrosomes already begin to spread or to separate by prophase and that the mitotic spindle is barrel-shaped. When eggs are fertilized with sperm that have been preteated with T-1, the centrosomes become flattened; the spindles are of normal length. Immunofluorescence microscopy using an anti-centrosomal monoclonal antibody reveals that T-1 modifies the structure of the centrosome so that barrel-shaped spindles with broad centrosomes are observed at metaphase, rather than the expected focused poles and fusiform spindle. Higher concentrations of T-1 induce fragmentation of centrosomes, causing abnormal accumulation of microtubules in polar regions. These results indicate that T-1 directly alters centrosomal configuration from a compact structure to a flattened or a spread structure. T-1 can be classified as a new category of mitotic drugs that may prove valuable in dissecting the molecular nature of centrosomes.  相似文献   

18.
In most animals, female meiotic spindles assemble in the absence of centrosomes; instead, microtubule nucleation by chromatin, motor activity, and microtubule dynamics drive the self-organization of a bipolar meiotic spindle. Meiotic spindle assembly commences when microtubules gain access to chromatin after nuclear envelope breakdown (NEBD) during meiotic maturation. Although many studies have addressed the chromatin-based mechanism of female meiotic spindle assembly, it is less clear how signaling influences microtubule localization and dynamics prior to NEBD. Here we analyze microtubule behavior in Caenorhabditis elegans oocytes at early stages of the meiotic maturation process using confocal microscopy and live-cell imaging. In C. elegans, sperm trigger oocyte meiotic maturation and ovulation using the major sperm protein (MSP) as an extracellular signaling molecule. We show that MSP signaling reorganizes oocyte microtubules prior to NEBD and fertilization by affecting their localization and dynamics. We present evidence that MSP signaling reorganizes oocyte microtubules through a signaling network involving antagonistic G alpha(o/i) and G alpha(s) pathways and gap-junctional communication with somatic cells of the gonad. We propose that MSP-dependent microtubule reorganization promotes meiotic spindle assembly by facilitating the search and capture of microtubules by meiotic chromatin following NEBD.  相似文献   

19.
Functional analysis of kinetochore assembly in Caenorhabditis elegans   总被引:7,自引:0,他引:7  
In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical "kinetochore null" phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A-containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.  相似文献   

20.
The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed an amphiaster ("a star on both sides")--that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB). Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC reassembled, and, prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split and separate before NEB, and these entered mitosis with persistent monastral spindles. Chromatin-associated RAN-GTP--the small GTPase Ran in its GTP bound state--could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but, in its absence, the fidelity of bipolar spindle assembly is highly compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号