首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Partitioning of 17 amino acids and their homooligopeptides of different lengths in an aqueous dextran-PEG two-phase system containing 0.15 m NaCl in 0.01 M sodium phosphate buffer, pH 7.4 and 0.11 m sodium phosphate buffer, pH 7.4 was examined. The relative hydrophobicity of the amino acid residues was estimated and expressed in equivalent numbers of methylene units. Analysis of the data shows that the additivity principle does hold for the hydrophobicity of homooligopeptides. The relative hydrophobicity of essentially all amino acid residues is noticeably affected by the ionic composition of aqueous media.  相似文献   

2.
3.
Erythrocytes from different species were subjected to partition in an aqueous, buffered Ficoll/Dextran two-phase system. The effects of different salt composition of the phase system on the distribution of erythrocytes was examined. Different ratios of sodium chloride to sodium phosphate buffer (pH 7.4) with the ionic strength varying from 0.176 to 0.288 M were used in the systems and similar relationship between the partition coefficients of the cells under study and the ionic strength were established. The relationships were treated according to a general equation previously established (Zaslavsky, B.Y., Miheeva, L.M., Metechkina, N.M., Pogorelov, V.M. and Rogozhin, S.V. (1978) FEBS Lett. 94, 77-80) and the results obtained were used to evaluate the relative hydrophobicity of the cells' surface.  相似文献   

4.
The effect of ionic strength on the partition of several mononucleotides, deoxyribonucleosides and the corresponding bases in aqueous buffered (pH 7.4) ficoll--dextran biphasic system was examined. The relative hydrophobicity of the compounds at zero ionic strength was estimated in terms of an equivalent number of CH2 groups. It is found that the effect of the ionic strength on the relative hydrophobicity of the phosphate group is similar for all the mononucleotides examined but for the adenosine derivative.  相似文献   

5.
Several amino acids and peptides were partitioned in poly(ethylene glycol) (PEG)/magnesium sulfate (MgSO4) aqueous two-phase systems. The partition coefficients measured for amino acids and peptides were proportional to the difference in PEG concentration between the phases. The partitioning data were used to calculate the relative hydrophobicities of individual amino acids, which were then used to estimate the hydrophobicities of peptides. The partition coefficients of several dipeptides were predicted from these estimated hydrophobicities. A series of peptide fragments that compose the pentapeptide leucine enkephalin was also partitioned in the PEG/MgSO4 system. Again, the partitioning depended upon the hydrophobicities of the individual exposed amino acids.  相似文献   

6.
A rapid method for purifying rat liver plasma membranes of high purity and yield is described. Squashed liver was homogenized in an aqueous polyethylene glycol-dextran two-phase system. After phase separation and reextraction of the bottom phase with fresh top phase, the combined polyethylene glycol-rich top phases were affinity partitioned in the presence of borate buffer with new bottom phase containing dextran-linked wheat-germ agglutinin. Under these conditions the lectin selectively pulled plasma membranes into the dextran-rich bottom phase, while other membranes preferentially distributed in the top phase. The lectin-containing bottom phase was reextracted with fresh top phase before collecting the purified plasma membranes by centrifugation. This protocol resulted in a preparation that was 30- to 40-fold enriched compared to the homogenate in plasma membrane markers for both the apical and basolateral domains and had yields of 55-70%. The contamination by other membranes was low. The entire procedure was completed within 90 min. The method should be useful for purifying plasma membranes also from other sources.  相似文献   

7.
In order to develop possible correlations to predict partioning behaviour of proteins, five mammalian albumins (goat, bovine, equine, human and pig ones) with similar physico-chemical properties (molecular mass and isoelectrical point) were chosen. Evaluation of the relationship between hydrophobicity and partitioning coefficient (Kr) in polyethylenglycol-dextran (PEG-DxT500) systems formed by polyethyleneglycols of different molecular mass (3350, 6000 and 10,000) was investigated by estimating relative surface hydrophobicity (So) with a fluorescent probe, 1 anilino-8-naphthalene sulfonate. No relationship between Kr and So was found for systems formed by PEG3350, while aqueous two-phase systems with PEG6000 and PEG10,000 gave better correlations. The results obtained may be explained on the basis of an increase in the interaction between the latter PEGs and the protein due to their higher hydrophobic character which increases as the PEG molecular mass does so. In this way, systems with PEGs of higher molecular mass give the highest resolution to exploit hydrophobicity in partitioning.  相似文献   

8.
This study evaluated the partitioning of ovomucoid from egg white, in aqueous two-phase systems (ATPS) composed of PEG 1500 and inorganic salt (lithium sulfate, sodium sulfate, magnesium sulfate, sodium carbonate or sodium citrate) at 25 °C. The results showed a great effect of the electrolyte nature on the partition coefficient. The partition coefficient value ranges from 0.02 to 6.0. The highest partition coefficients were obtained from systems composed of sodium carbonate and the lowest in systems composed of magnesium sulfate. In the system containing magnesium sulfate, a recovery percentage greater than 90% was obtained.  相似文献   

9.
The present article describes the use of the aqueous dextran-polyethylene glycol two-phase system for the study of the interactions between the bacterial ribosomes and some antibiotics like streptomycin, chloramphenicol, tobramycin, and tetracycline. As compared to other methods, such as equilibrium dialysis, this simple technique appears to be a particularly suitable and rapid one.  相似文献   

10.
The partitioning of proteins between the coexisting phases of two-phase aqueous polymer systems reflects an intricate and delicate balance of interactions between proteins, polymers, salts and water. Experimental investigations have suggested that a large number of factors influence protein partitioning, including the types of polymers, their molecular weight and concentration; the protein sizes, conformation and composition; salt type and concentration, and solution pH; and the presence of ligands attached to the polymer which may interact with surface sites of the protein. Complementary modelling attempts have been successful in illuminating several molecular-level mechanisms influencing protein partitioning using lattice-model techniques, viral expansions and a scaling-thermodynamic approach. In spite of these experimental and modelling approaches, many of the physical phenomena associated with these complex systems are not well understood. Notably, the precise nature of the protein-polymer interactions and the potent effect of inorganic salts on the partitioning of proteins in these systems remains poorly understood.  相似文献   

11.
Summary An affinity polymer derivative was synthesized with the group specific acid protease inhibitor pepstatin attached to dextran (M.W. 500,0001). This derivative was used in an aqueous two-phase system with hydroxypropyldextran to purify crude solutions of chymosin and Endothia parasitica (EP) acid proteases. Chymosin was purified by a factor of 6.2 with an overall yield of 83%. EP protease was similarly purified. A new pepstatin binding protease was discovered in crude EP extracts.  相似文献   

12.
13.
The molecular basis of partitioning in aqueous two-phase systems.   总被引:2,自引:0,他引:2  
Protein purification based on partition in aqueous two-phase systems has attracted interest for many years. This approach has been advocated as a primary-stage unit operation in downstream processing. In reality, application has been strictly limited through inadequate understanding of the complex molecular forces involved in partitioning processes.  相似文献   

14.
Protein partitioning in two-phase aqueous polymer systems   总被引:1,自引:0,他引:1  
Theories of protein partitioning in two-phase polymer systems which account for the effects of different aspects of system composition-such as the choice of materials, protein size, polymer molecular weight, polymer concentration, salt concentration, and affinity ligands-are reviewed. Although the present models provide some information about specific aspects of partitioning, a comprehensive and fundamental theory which can be used to predict protein partitioning behavior has not yet been developed. Some recommendations for future work are given.  相似文献   

15.
This study presents the partitioning and purification of recombinant Bacillus badius phenylalanine dehydrogenase (PheDH) in aqueous two-phase systems (ATPS) composed of polyethylene glycol 6000 (PEG-6000) and ammonium sulfate. A single-step operation of ATPS was developed for extraction and purification of recombinant PheDH from E. coli BL21 (DE3). The influence of system parameters including; PEG molecular weight and concentration, pH, (NH(4))(2)SO(4) concentration and NaCl salt addition on enzyme partitioning were investigated. The best optimal system for the partitioning and purification of PheDH was 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH(4))(2)SO(4) and 13% (w/w) NaCl at pH 8.0. The partition coefficient, recovery, yield, purification factor and specific activity values were of 92.57, 141%, 95.85%, 474.3 and 10424.97 U/mg, respectively. Also the K(m) values for L-phenylalanine and NAD(+) in oxidative deamination were 0.020 and 0.13 mM, respectively. Our data suggested that this ATPS could be an economical and attractive technology for large-scale purification of recombinant PheDH.  相似文献   

16.
The release behavior of a periplasmic enzyme, acid phosphatase, from heat-stressed Escherichia coli cells was characterized by using kinetic analyses when the cells were treated by Triton X-100–EDTA. The hydrophobicity of the cell surface and the release-rate of the enzyme were not influenced by heat treatment at temperatures between 30 and 50°C. However, these values varied above 55°C. The release-rate constants were found to correspond to the net and local hydrophobicity of the outer membrane surface, evaluated by aqueous two-phase partitioning.  相似文献   

17.
Soluble recombinant Vitreoscilla hemoglobin was purified from E. coli lysate by sequential two-phase extraction techniques. Extraction of lysate containing VHb in PEG/dextran gave a 3.6-fold increase in VHb purity in the PEG-rich phase via a size exclusion mechanism. Further extraction of the recovered PEG phase in PEG/sodium sulfate gave an additional 2.0-fold increase in purity in the PEG-rich phase due to an electrostatic mechanism. Final extraction of the PEG phase in PEG/magnesium sulfate gave an additional 1.3-fold increase in VHb purity in the magnesium sulfate-rich phase. The final yield from the extractive purification was 47% with purity of VHb estimated to be greater than 95%. Yields from the sulfate salt extractions are essentially quantitative due to the extreme partitioning behavior of VHb in these systems. VHb partition coefficients as large as 46 in PEG/sodium sulfate and as small as 0.06 in PEG/magnesium sulfate were observed. Similar small partition coefficients were obtained with PEG/manganese sulfate extractions. This dramatic effect of divalent cation content on the partition coefficient of VHb in PEG/sulfate salt systems was investigated by pH and magnesium ion titration experiments. Results show the effect to be largest and nearly constant for pH values greater than 6.0 and diminished at lower pH values. A model based on magnesium ion binding to negatively charged amino acids is shown to correlate with the data well. Based on model formulation and the partitioning behavior of contaminant proteins, the observed effect is expected to be applicable to other proteins.  相似文献   

18.
Phase diagram data at 4 degrees C was determined for the aqueous two-phase systems composed of polyethylene glycol, dextran, and water. The Flory-Huggins theory of polymer thermodynamics was used to correlate partitioning of biomolecules in these aqueous two-phase systems resulting in a simple linear relationship between the natural logarithm of the partition coefficient and the concentration of polymers in the two phases. This relationship was verified by partitioning a series of dipeptides which differ from one another by the addition of a CH(2) group on the c-terminal amino acid residue and by utilizing a set of low-molecular-weight proteins. The slope of the line could be expressed in terms of the interactions of the biomolecule with the phase forming polymers and water. The main result for the dipeptides was that knowledge of the partition coefficient in any of the PEG/dextran/water systems, regardless of polymer molecular weight, enabled prediction of the coefficient in all of the systems. The dipeptides were also used for determination of the Gibbs free energy of transfer of a CH(2) group between the phases. This quantity was correlated with polymer concentration, thus establishing a hydrophobicity profile for the PEG/ dextran/water systems. The methodology for predicting dipeptide partition coefficients was extended to proteins, where it was found that low-molecular-weight proteins gave a linear relationship with the tie line compositions of a phase diagram.  相似文献   

19.
We describe the purification of lacrimal gland plasma membranes by affinity partitioning using a two-phase system containing polyethylene glycol and dextran in which wheat germ agglutinin conjugated to dextran is used as affinity ligand. When partitioning a microsomal fraction, the plasma membrane marker 5′-nucleotidase was obtained in the affinity ligand-containing bottom phase, whereas the endoplasmic reticulum marker NADH-ferricyanide reductase remained in the top phase. The affinity partitioning behaviour of components involved in exocytosis and cellular signalling was also examined.  相似文献   

20.
Conidia of Penicillium brevi-compactum and Aspergillus fumigatus, sporangiospores of Rhizopus rhizopodiformis, spores of Streptomyces griseus, and bacterial cells of Bacillus subtilis were partitioned in two-phase systems consisting of dextran, polyethylene glycol, substituted positively charged sulfonylpolyethylene glycol, and water. At a pH of 2.8 in the system, the microorganisms showed 60 to 90% affinity for the upper, polyethylene glycol-rich phase, except for cells of B. subtilis, which were entirely located in the lower, dextran-rich phase. This partition behavior was used to separate microorganisms in aqueous suspensions of peat, wood fuel chip, and straw samples from organic dust impurities prior to total count by acridine orange staining and epifluorescence microscopy. Only one extraction of the interphase and lower phase was needed to separate approximately 98% of the conidia of Penicillium chrysogenum from a suspension containing peat dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号