首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tenascin-R (TN-R) is a member of the tenascin family of multidomain matrix glycoproteins that is expressed exclusively in the central nervous system by oligodendrocytes and small neurons during postnatal development and in the adult. TN-R contributes to the regulation of axon extension and regeneration, neurite formation and synaptogenesis, and neuronal growth and migration. TN-R can be modified with three distinct sulfated oligosaccharide structures: HNK-1 (SO(4)-3-GlcUAbeta1,3Galbeta1,4GlcNAc), GalNAc-4-SO(4), and chondroitin sulfate. We have determined that TN-R expressed in dendrite-rich regions of the rat cerebellum, hippocampus, and cerebral cortex is one of the major matrix glycoproteins that bears N-linked carbohydrates terminating with beta1,4-linked GalNAc-4-SO(4). The syntheses of these unique sulfated structures on TN-R are differentially regulated. Levels of HNK-1 on TN-R rise and fall in parallel to the levels of TN-R during postnatal development of the cerebellum. In contrast, levels of GalNAc-4-SO(4) are regulated independently from those of TN-R, rising late in cerebellar development and continuing into adulthood. As a result, the pattern of TN-R modification with distinct sulfated carbohydrate structures changes dramatically over the course of postnatal cerebellar development in the rat. Because TN-R interacts with a number of different matrix components and, depending on the circumstances, can either activate or inhibit neurite outgrowth, the highly regulated addition of these unique sulfated structures may modulate the adhesive properties of TN-R over the course of development and during synapse maintenance. In addition, the 160-kDa form of TN-R is particularly enriched for terminal GalNAc-4-SO(4) later in development and in the adult, suggesting additional levels of regulation.  相似文献   

2.
The glycoprotein hormones lutropin (LH) and thyrotropin and a limited number of additional glycoproteins bear carbohydrate structures terminating with the unique sequence SO(4)-4-GalNAcbeta1,4GlcNAcbeta that has been conserved in the glycoprotein hormones of all vertebrate species. Synthesis of these structures is mediated by a protein-specific beta1,4GalNAc-transferase and a GalNAc-4-sulphotransferase (GalNAc-4-ST1). GalNAc-4-ST1 is a member of a family of sulphotransferases that includes HNK-1 sulphotransferase, chondroitin-4-sulphotransferases-1-3 and dermatan-4-sulphotransferase-1. With the exception of HNK-1-ST, these sulphotransferases add sulphate to the C-4 hydroxy group of either terminal or non-terminal beta1,4-linked GalNAc. GalNAc-4-ST1 is most highly expressed in pituitary, cerebellum and other regions of the brain. The terminal GalNAcSO(4) on LH is recognized by the cysteine-rich domain of the mannose/GalNAc-4-SO(4) receptor located in hepatic endothelial cells. Each cysteine-rich domain binds a single terminal GalNAc-4-SO(4), and the receptor must form non-covalently associated homodimers in order to simultaneously engage two GalNAc-4-SO(4) moieties on separate oligosaccharides with sufficient affinity to form stable complexes. The receptor mediates the clearance of LH from the blood. This clearance, in conjunction with the stimulated release of hormone from dense core granules in pituitary gonadotroph cells, is required to produce the episodic rise and fall in LH levels needed for optimal oestrogen production during the implantation of embryos in the uterus.  相似文献   

3.
4.
The mannose receptor (MR) binds foreign and host ligands through interactions with their carbohydrates. Two portions of MR have distinct carbohydrate recognition properties. One is conferred by the amino-terminal cysteine-rich domain (Cys-MR), which plays a critical role in binding sulfated glycoproteins including pituitary hormones. The other is achieved by tandemly arranged C-type lectin domains that facilitate carbohydrate-dependent uptake of infectious microorganisms. This dual carbohydrate binding specificity enables MR to bind ligands by interacting with both sulfated and non-sulfated polysaccharide chains. We previously determined crystal structures of Cys-MR complexed with 4-SO(4)-N-acetylglucosamine and with an unidentified ligand resembling Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]). In continued efforts to elucidate the mechanism of sulfated carbohydrate recognition by Cys-MR, we characterized the binding affinities between Cys-MR and potential carbohydrate ligands using a fluorescence-based assay. We find that Cys-MR binds sulfated carbohydrates with relatively high affinities (K(D)=0.1 mM to 1.0 mM) compared to the affinities of other lectins. Cys-MR also binds Hepes with a K(D) value of 3.9 mM, consistent with the suggestion that the ligand in the original Cys-MR crystal structure is Hepes. We also determined crystal structures of Cys-MR complexed with 3-SO(4)-Lewis(x), 3-SO(4)-Lewis(a), and 6-SO(4)-N-acetylglucosamine at 1.9 A, 2.2 A, and 2.5 A resolution, respectively, and the 2.0 A structure of Cys-MR that had been treated to remove Hepes. The conformation of the Cys-MR binding site is virtually identical in all Cys-MR crystal structures, suggesting that Cys-MR does not undergo conformational changes upon ligand binding. The structures are used to rationalize the binding affinities derived from the biochemical studies and to elucidate the molecular mechanism of sulfated carbohydrate recognition by Cys-MR.  相似文献   

5.
Recognition of carbohydrates on glycosylated molecules typically requires multivalent interactions with receptors. Monovalent forms of terminal saccharides engaged by the receptor binding sites typically display weak affinities in the mm range and poor specificity. In contrast, multivalent forms of the same saccharides are bound with strong affinity (10(-7)-10(-9) m) and significantly greater specificity. Although multivalency can readily account for increased affinity, the molecular basis for enhanced specificity is not well understood. We have examined the specificity of the cysteine-rich domain of the mannose/GalNAc-4-SO4 receptor using monovalent and multivalent forms of the trisaccharide GalNAcbeta1,4GlcNAcbeta1,2Manalpha (GGnM) sulfated at either the C4 (S4GGnM) or C3 (S3GGnM) hydroxyl of the terminal GalNAc. Monovalent S4GGnM and S3GGnM have K(i) values of 25.8 and 16.2 microm, respectively. Multivalent conjugates of the same GalNAc-4-SO4- and GalNAc-3-SO4-bearing trisaccharides (6.7 mol of trisaccharide/mol of bovine serum albumin) have K(i) values of 0.013 and 0.170 microm, respectively. The 2000-fold versus 95-fold change in affinity seen for the multivalent forms of these 4-sulfated and 3-sulfated trisaccharides reflects a difference in the impact of conformational entropy. A large fraction of the SO4-3-GalNAc structures exists in a form that is not favorable for binding to the Cys-rich domain. This reduces the effective concentration of SO4-3-GalNAc as compared with SO4-4-GalNAc under the same conditions and results in a markedly lower association rate. This difference in association rate accounts for the 12-fold difference in the rate of clearance from the blood seen with S4GGnM-BSA and S3GGnM-BSA in vivo.  相似文献   

6.
7.
1. Pig skin dermatan sulphate was degraded by periodate oxidation followed by alkaline elimination or by chondroitinase-ABC to quantify irregular repeating units, i.e. those containing D-GlcUA (D-glucuronic acid) and L-IdUA-SO4 (sulphated iduronic acid). 2. Previous results of periodate oxidation (Fransson, 1974) indicated repeating sequences in pig skin dermatan sulphate containing, on average, 3D-GlcUA, 9 L-IdUA-SO4 or 28 L-IdUA units in addition to N-acetylgalactosamine sulphate. However, complete digestion with chondroitinase-ABC yielded, at the most, 3-4 disulphated disaccharides/chain. Consequently, more than one-half of the L-IdUA-SO4 residues were present in monosulphated periods, i.e. IdUA-(SO4)-GalNAc. 3. To determine the location of L-IdUA-SO4 residues along the copolymeric chain dermatan sulphate was digested with testicular hyaluronidase. (This enzyme cleaves GalNAc-GlcUA bonds within block regions containing D-GlcUA.) By NaB3H4 reduction GalNAc residues located in the reducing end of the fragments were converted into [3H]GalNAcOH (N-acetylgalactosaminitol). Finally, the radioactive product was fragmented by periodate oxidation followed by alkaline elimination. The bulk of the radioactivity was associated with periodate-resistant oligosaccharides indicating that clusters of GlcUA-GalNAc-SO4 periods are often adjacent to a varying number of (n = 1-4) of L-IdUA-SO4-containing periods. 4. To study the distribution of L-IdUA-SO4-containing periods in relation to blocks of IdUA-GalNAc-SO4 periods different fractions of hyaluronidase-degraded dermatan sulphate were degraded separately. In all types of fragments (mol. wts. 1,500-10,000) L-IdUA-SO4-containing periods were demonstrated. In short fragments reducing terminal GalNAc-6-SO4 (6-sulphated N-acetylgalactosamine) was found confirming that these sequences were joined to relatively long D-GlcUA-containing block sequences via GalNAc-6-SO4. Moreover, low-molecular-weight oligosaccharides composed of alternating sequences were encountered. An octasaccharide derived from the carbohydrate sequence -GalNAc---GlcUA-GalNAc-IdUA-GalNAc-GlcUA-GalNAc-IdUA-GalNAc---GlcUA-GalNAc (--- indicates the position of cleavage by hyaluronidase) was identified.  相似文献   

8.
Secretion of sulfated thyroglobulin   总被引:2,自引:0,他引:2  
Thyroid follicle cells from various mammalian species incorporate 35-SO4(2-). Light and electron microscopic autoradiographs show that the Golgi complex is the predominant site of sulfate incorporation and that the secretory product accumulating in the follicle lumen is sulfated. In order to determine which components of the luminal content carry the sulfate residues, inside-out follicles from pig thyroid glands were incubated in the presence of 35-SO4(2-) and the secretory product released into the culture medium was analyzed by polyacrylamide gel electrophoresis. The observations show that the secretory product consists of sulfated thyroglobulin and that approximately 13 sulfate residues are bound covalently to 1 molecule of dimeric thyroglobulin. Digestion of 35-SO4(2-)-thyroglobulin with endoglycosidase H removes 20 to 30% of the radioactivity, indicating that the high mannose carbohydrate side chains carry sulfate residues. The complex carbohydrate side chains are apparently free of sulfate since treatment with endoglycosidase D did not alter the sulfate content. About 2/3 of the sulfate is cleaved by hydrolysis with 1 M HCl (5 min, 95 degrees C) indicating the presence of tyrosine sulfate. Part of the sulfate is exposed and presumably located on the surface of the thyroglobulin molecule as suggested by the direct accessibility of 35-SO4(2-)-thyroglobulin to digestion with sulfatases. The sulfate residues contribute to the anionic state of thyroglobulin. It is postulated that the sulfate residues operate in the regulation of thyroglobulin transport in the cell and in the tight packaging of thyroglobulin in the follicle lumen.  相似文献   

9.
Midkine is a heparin-binding polypeptide which is implicated in the control of development and repair of various tissues. Recognition of sulfate groups in glycosaminoglycans is important for its function. To elucidate further its mechanism of action, the interactions of midkine with sulfated glycolipids were studied. Of various glycolipids and lipids examined, midkine bound strongly to sulfatide and cholesterol-3-sulfate (CHO-3-SO4) in a dose-dependent manner but failed to bind to other standard glycolipids and lipids. The properties of midkine binding to sulfatide and to CHO-3-SO4 differed in their sensitivity to inhibition by anionic polysaccharides, salt concentration and unlabeled midkine. Heparin inhibited midkine binding to sulfatide but weakly inhibited its binding to CHO-3-SO4. Liposomes bearing sulfatide carried out significant interactions with immobilized midkine, whereas those bearing CHO-3-SO4 did not. Incorporation of sulfatide into 32D cells and trypsinized COS cells enhanced 125I-labelled midkine binding, whereas incorporation of ganglioside or galactosylceramide had no effect. Furthermore, sulfatide-incorporated cells enhanced cell attachment to midkine-coated coverslips. These results indicate that midkine binds to sulfatide under physiological conditions and the midkine-sulfatide interaction may be important in controlling cell attachment.  相似文献   

10.
Fragmentation of the heparan sulfate chains from bovine glomerular basement membrane (GBM) by hydrazine/nitrous acid treatment followed by NaB3H4-reduction yielded a mixture of six sulfated disaccharides containing D-glucuronic (GlcUA) or L-iduronic acid (IdUA) and terminating in 2,5-anhydro[3H]mannitol (AnManH2), in addition to the nonsulfated component GlcUA beta 1----4AnManH2. Among these products two novel disaccharide units were identified as IdUA alpha 1----4AnManH2(3-SO4) and IdUA(2-SO4)alpha 1----4AnManH2(3-SO4); these accounted for 22% of the total sulfated species indicating that there are 2-3 residues of 3-O-sulfated glucosamine/heparan sulfate chain. The disulfated disaccharide was shown through its release by direct nitrous acid treatment to be situated in a GlcNSO3-IdUA(2-SO4)-GlcNSO3(3-SO4) sequence which is distinct from that in which 3-O-sulfated glucosamine is located in the antithrombin-binding region of heparins. Analyses of heparan sulfate from lens capsule, a nonvascular basement membrane, indicated the absence of sequences containing 3-O-sulfated glucosamine, although otherwise the sulfated disaccharides produced by hydrazine/nitrous acid/Na-B3H4 treatment (GlcUA beta 1----4AnManH2(6-SO4), IdUA alpha 1----4AnManH2(6-SO4), IdUA(2-SO4)alpha 1----4AnManH2 and IdUA(2-SO4)alpha 1----4AnManH2(6-SO4] were the same as from GBM. Examination of the GBM heparan sulfate domains after nitrous acid treatment indicated that the O- as well as N-sulfate groups are clustered in an iduronic acid-rich 10-disaccharide peripheral segment, while the internal region (approximately 20 disaccharides) is composed primarily of repeating GlcUA beta 1----4GlcNAc units. The localization of chain diversity to the outer region may facilitate interactions of the heparan sulfate with other macromolecular components.  相似文献   

11.
Sulfoglucuronyl glycolipids (SGGLs) are temporally and spatially regulated molecules present in the nervous system during its development. The characteristics of the rat brain enzyme glucuronyltransferase involved in the biosynthesis of SGGLs have been described. The enzyme catalyzes the transfer of glucuronic acid (GlcA) from UDP-GlcA to terminal galactose of the neolacto (type 2) series of glycolipids to form beta 1-3-linked glucuronyl neolacto glycolipids. The enzyme was highly specific for the neolacto series of acceptor glycolipids, neolactotetraosylceramide (nLcOse4Cer), neolactohexaosylceramide (nLcOse6-Cer), and neolactooctaosylceramide (nLcOse8Cer) and was different from the drug-inducible phenol:GlcA transferase. Considerable activity of GlcA transferase was present in the adult rat cerebral cortex, even though SGGLs almost completely disappeared from the cortex by postnatal day 15. In the cerebellum, although levels of SGGLs increased with development, the specific activity of GlcA transferase declined. The results indicated that GlcA transferase was not a regulatory enzyme controlling the expression of SGGLs. Measurements of the levels of nLcOse4Cer and nLcOse6Cer in these neural tissues indicated that the availability of these precursors may regulate the differential expression of SGGLs seen previously. GlcA transferase was significantly reduced in the cerebellar Purkinje cell degenerating murine mutant (pcd/pcd), which is consistent with the loss of SGGLs in the cerebellum of this mutant and specific association of these glycolipids with Purkinje cells.  相似文献   

12.
Antistasin is a 119 amino acid heparin-binding protein from the leech Haementaria officinalis which has anticoagulant and antimetastatic properties. A series of peptides representing the basic amino acid-rich domains of the amino- and carboxyl-terminal regions of the inhibitor were synthesized by solid-phase peptide chemistry and their ability to bind sulfated glycolipids was investigated. The findings show that [A103,106,108] antistasin 93-119 has high affinity for sulfatide and inhibits the specific interaction of whole antistasin with [Gal(3-SO4)beta 1-1Cer]. We conclude that the 93-119 region is a critical domain that mediates the interaction of antistasin with sulfated glycolipids.  相似文献   

13.
14.
Properdin, which stabilizes the C3 convertase during the activation of the alternate complement pathway, contains amino acid sequence homologies with several proteins that bind sulfated glycoconjugates, including the adhesive protein thrombospondin and the leech salivary protein antistasin. This homology is based around the sequence Cys-Ser-Val-Thr-Cys-Gly-X-Gly-X-X-X-Arg-X-Arg. To determine if these homologous amino acid sequences are sulfated glycoconjugate-binding domains, purified native properdin, as well as activated properdin (a high molecular weight form of properdin), were examined for binding to various lipids in solid phase radioimmunoassays. Of the lipids tested, both native and activated properdin bind with high affinity only to sulfatide [Gal(3-SO4)beta 1-1 Cer], but not to comparable levels of cholesterol-3-SO4, or several neutral glycolipids, gangliosides, and phospholipids. Sulfatide binding by both forms of properdin is inhibited by dextran sulfate (Mr = 500,000) or fucoidan, whereas only the activated form is inhibited by dextran sulfate (Mr = 5,000) or heparin. Comparable levels of chondroitin sulfates A, B, and C, keratan sulfate, dextran (Mr = 90,000), or hyaluronic acid do not inhibit binding. Taken together, these data suggest that properdin, like antistasin and thrombospondin, binds sulfated glycoconjugates and supports the conclusion that the homologous sequences are sulfated glycoconjugate-binding domains.  相似文献   

15.
Sorting protein-related receptor (SorLA/LR11) is a highly conserved mosaic receptor that is expressed by cells in a number of different tissues including principal cells of the collecting ducts in the kidney and neurons in the central and peripheral nervous systems. SorLA/LR11 has features that indicate it serves as a sorting receptor shuttling between the plasma membrane, endosomes, and the Golgi. We have found that a fraction of SorLA/LR11 that is synthesized in the kidney and the brain bears N-linked oligosaccharides that are modified with terminal beta1,4-linked GalNAc-4-SO(4). Oligosaccharides located in the vacuolar sorting (Vps) 10p domain (Vps10p domain) are modified with beta1,4-linked GalNAc when the Vps10p domain is expressed in cells along with either of two recently cloned protein-specific beta1,4GalNAc-transferases, GalNAcTIII and GalNAcTIV. Either of two sequences with basic amino acids located within the Vps10p domain is able to mediate recognition by these beta1,4GalNAc-transferases. The highly specific modification of oligosaccharides in the Vps10p domain of SorLA/LR11 with terminal GalNAc-4-SO(4) suggests that this unusual modification may modulate the interaction of SorLA/LR11 with proteins and influence their trafficking.  相似文献   

16.
17.
Abstract: The lacto series of glycolipids are only minor constituents in mammalian CNS and are found mostly during development. Expression of a significant amount (70 μg of neuraminic acid/g dry weight) of disialosyl-lacto- N -neotetraosylceramide (LD1) in adult mouse cerebellum is reported for the first time in the nervous system. The structure of this ganglioside was determined by hydrolysis with various glycosidases, immunochemical tests, sugar and fatty acid analyses after permethylation and capillary GLC-mass spectrometry, sugar linkage analysis of permethylated alditol acetates, and fast-atom bombardment-mass spectrometry of the native ganglioside. The structure of LD1 was determined to be NeuAc-NeuAc α 2-3Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc β 1-1-ceramide. The major fatty acid was 18:0, and the long-chain base was C18-sphingenine. Mouse cerebellum also contained O -acetyl-LD1 and several other O -acetylated gangliosides as recognized by monoclonal antibodies ME311 and 3G5. The levels of LD1 and O -acetyl-LD1 in cerebellum increased during postnatal development. During development of the Purkinje cell degeneration mutant, pcd/pcd , the levels of both of these gangliosides in the cerebellum declined with the loss of Purkinje cells, a finding indicating that these gangliosides are primarily associated with Purkinje cells. In the cortex, LD1, O -acetyl-LD1, and O -acetyl GD3, like GD3, are developmentally regulated antigens and are only expressed in the fetal cortex and not to any significant extent in the adult.  相似文献   

18.
Galectin-3 has been suspected of modulating cell to extracellular matrix interactions in a novel fashion ever since it was first described. However, the rapid accumulation of research data in just the last 8 years alone has completely changed our perspective of this multifunctional protein. Its chimeric nature (consists of carbohydrate recognition and collagen like domains) somehow makes it suited to interact with a plethora of interesting extracellular matrix proteins some of which might enable it to cross the plasma membrane despite its lack of appropriate signal peptides. It is now becoming established as a mediator of signal transduction events on the cell surface as well as a mediator of a variety of extra-cellular processes such as kidney development, angiogenesis, neuronal functions, tumor metastasis, autoimmune disorders, endocytosis and possibly exocytosis. Nevertheless, it still retains its unique position as a mediator/modulator of cell to extracellular matrix adhesive interactions. Cells, particularly epithelial cells which lack galectin-3 expression, interact poorly with their extracellular matrices. In some of these processes, it functions as a matricellular protein, displaying both pro- and anti-adhesive properties. Published in 2004.  相似文献   

19.
The murine stem cell virus (MSCV) promoter exhibits activity in mouse hematopoietic cells and embryonic stem cells. We generated transgenic mice that expressed enhanced green fluorescent protein (GFP) under the control of the MSCV promoter. We obtained 12 transgenic founder mice through 2 independent experiments and found that the bodies of 9 of the founder neonates emitted different levels of GFP fluorescence. Flow cytometric analysis of circulating leukocytes revealed that the frequency of GFP-labeled leukocytes among white blood cells ranged from 1.6% to 47.5% across the 12 transgenic mice. The bodies of 9 founder transgenic mice showed various levels of GFP expression. GFP fluorescence was consistently observed in the cerebellum, with faint or almost no fluorescence in other brain regions. In the cerebellum, 10 founders exhibited GFP expression in Purkinje cells at frequencies of 3% to 76%. Of these, 4 mice showed Purkinje cell-specific expression, while 4 and 2 mice expressed GFP in the Bergmann glia and endothelial cells, respectively. The intensity of the GFP fluorescence in the body was relative to the proportion of GFP-positive leukocytes. Moreover, the frequency of the GFP-expressing leukocytes was significantly correlated with the frequency of GFP-expressing Purkinje cells. These results suggest that the MSCV promoter is useful for preferentially expressing a transgene in Purkinje cells. In addition, the proportion of transduced leukocytes in the peripheral circulation reflects the expression level of the transgene in Purkinje cells, which can be used as a way to monitor transgene expression properties in the cerebellum without invasive techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号