首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydration of N-terminus and substitution of a threonine for the threoninol residue at the C-terminus of Tyr3-octreotide (TOC) has resulted in improved pharmacokinetics and tumor targeting of its radioiodinated derivatives. Yet, these peptides are very susceptible to in vivo deiodination due to the similarity of monoiodotyrosine (MIT) to thyroid hormone. The goal of this work was to develop octreotate analogues containing both a sugar moiety and a nontyrosine prosthetic group on which a radioiodine or 211At can be introduced. Solid-phase synthesis and subsequent modifications delivered an iodo standard of the target peptide N(alpha)-(1-deoxy-D-fructosyl)-N(epsilon)-(3-iodobenzoyl)-Lys0-octreotate (GIBLO) and the corresponding tin precursor N(alpha)-(1-deoxy-D-fructosyl)-N(epsilon)-[(3-tri-n-butylstannyl)benzoyl]-Lys0-octreotate (GTBLO). GIBLO displaced [125I]TOC from somatostatin receptor subtype 2 (SSTR2)-positive AR42J rat pancreatic tumor cell membranes with an IC50 of 0.46 +/- 0.05 nM suggesting that GIBLO retained affinity to SSTR2. GTBLO was radiohalogenated to [131I]GIBLO and N(alpha)-(1-deoxy-D-fructosyl)-N(epsilon)-(3-[211At]astatobenzoyl)-Lys0-octreotate ([211At]GABLO) in 21.2 +/- 4.9% and 46.8 +/- 9.5% radiochemical yields, respectively. From a paired-label internalization assay using D341 Med medulloblastoma cells, the maximum specific internalized radioactivity from [131I]GIBLO was 1.78 +/- 0.8% of input dose compared to 9.67 +/- 0.43% for N(alpha)-(1-deoxy-D-fructosyl)-[125I]iodo-Tyr3-octreotate ([125I]I-Gluc-TOCA). Over a 4 h period, the extent of internalization of [131I]GIBLO and [211At]GABLO was similar in this cell line. In D341 Med murine subcutaneous xenografts, the uptake of [125I]I-Gluc-TOCA at 0.5, 1 and 4 h was 21.5 +/- 4.0% ID/g, 18.8 +/- 7.7% ID/g, and 0.9 +/- 0.4% ID/g, respectively. In comparison, these values for [131I]GIBLO were 6.9 +/- 1.2% ID/g, 4.7 +/- 1.4% ID/g, and 0.8 +/- 0.5% ID/g. Both in vitro and in vivo catabolism studies did not suggest the severance of the lys0 along with its appendages from the peptide. Taken together, although GIBLO maintained affinity to SSTR2, its tumor uptake both in vitro and in vivo was substantially lower than that of I-Gluc-TOCA suggesting other factors such as net charge and overall geometry of the peptide may be important.  相似文献   

2.
Several neuroendocrine tumors are known to express both the somatostatin receptor subtype 2 (SSTR2) and the norepinephrine transporter (NET), and radiopharmaceuticals directed toward both these targets such as MIBG and octreotide derivatives are routinely used in the clinic. To investigate the possibility of targeting both NET and SSTR2 conjointly, a conjugate of radioiodinated MIBG and octreotate was synthesized. Attempts to synthesize the radioiodinated target compound (MIBG-octreotate; [ (131)I] 12a) from a tin precursor were futile; however, it could be accomplished from a bromo precursor by exchange radioiodination in 3-36% ( n = 10) radiochemical yields. The total uptake of [ (131)I] 12a in SK-N-SH human neuroblastoma cells transfected to express SSTR2 (SK-N-SHsst2) was similar to that for [ (125)I]MIBG at all time points (34.9 +/- 2.4% vs 43.8 +/- 1.2% at 4 h; p < 0.05), while it was substantially lower (5.4 +/- 0.3% vs 35.9 +/- 1.2%) in the SH-SY5Y cell line, a subclone of SK-N-SH line that is known to express SSTR2. The NET blocker desipramine reduced the uptake of [ (131)I] 12a only to a small extent, further suggesting a limited role of NET in its binding and accumulation. Uptake of [ (131)I] 12a in SK-N-SHsst2 cells was 8-10-fold higher ( p < 0.05) than that of [ (125)I]I-Gluc-TOCA, an octreotide analogue, at all time points over a 4 h period and was reduced to about 20% by 10 muM octreotide demonstrating that the uptake of [ (131)I] 12a in this cell line is predominantly mediated by SSTR2. The intracellularly trapped radioactivity in SK-N-SHsst2 cells was substantially higher for [ (131)I] 12a compared to that for [ (125)I]OIBG-octreotate, an isomeric congener of 12a. Because MIBG has more specific NET-mediated uptake than OIBG, this suggests at least a partial role for NET-mediated uptake of [ (131)I] 12a in this cell line. While further refinement in the structure of the conjugate-probably interposition of a flexible and/or cleavable linker between the MIBG and octreotate moieties-may be necessary to make it a substrate/ligand for both NET and SSTR2, this conjugate is demonstrated to be much superior than I-Gluc-TOCA with respect to the uptake in SSTR2-expressing cells.  相似文献   

3.
For the purpose of developing highly sensitive and convenient determination of plasmalogens, the high-performance liquid chromatography (HPLC) method using radioactive iodine ((125)I) was investigated. Radioactive triiodide (1-) ion ((125)I(3)(-)), which is an actual iodine form capable of reacting with vinyl ether bond ([bond]CH(2)[bond]O[bond]CH[double bond]CH[bond]) of plasmalogens, could be safely and efficiently produced by oxidizing a commercial radioactive sodium iodine (Na(125)I) with hydrogen peroxide (H(2)O(2)) under acid condition (pH 5.5-6.0), which is called iodine-125 reagent. I(3)(-) specifically reacted with plasmalogens at the molar ratio of 1:1 in methanol, and 1 or 2 mol of plasmalogens was involved in the binding with iodine per iodine atom, resulting in the formation of stable iodine-binding phospholipids. The HPLC system with Diol column and acetonitrile/water as a mobile phase was available for separating iodine-binding phospholipids from nonbinding free iodine and for separately eluting iodine-binding phospholipids derived from choline and ethanolamine plasmalogens. Using iodine-125 reagent (1.85 MBq/ml), plasmalogens were detectable at high sensitivity of 10,000-15,000 cpm/nmol, which is more than 1000-fold higher sensitivity than the classical determination with nonradioactive iodine. Plasmalogen concentrations in human plasma were measured with the HPLC system and determined as, on average, 129.1+/-31.3 microM (n=8) in a 1.2 content ratio of choline to ethanolamine plasmalogens, a concentration that nearly agrees with the value reported previously.  相似文献   

4.
Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of alpha-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab' fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4-7) were prepared and conjugated with an antibody Fab' fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab'-borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab'. For comparison, direct labeling of the Fab' with 125I and 211At was conducted. Direct labeling with Na[125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab' with Na[211At]At and Chloramine-T resulted in a yield of <1% after quenching with NaS2O5. As another comparison, the same Fab' was conjugated with p-[211At]astatobenzoate NHS ester, [211At]1c-Fab', and (separately) with p-[125I]iodobenzoate NHS ester, [125I]1b-Fab'. An evaluation in athymic mice demonstrated that [211At]1c-Fab' underwent deastatination. In contrast, the high in vivo stability of [125I]1b-Fab' allowed it to be used as a tracer control for the natural distribution of Fab'. Although found to be much more stable in vivo than [211At]1c-Fab', the biodistributions of nido-carborane conjugated Fab' ([125I]2-Fab'/ [211At]2-Fab') and the bis-nido-carborane (VFC) ([125I]3-Fab'/[211At]3-Fab') had very different in vivo distributions than the control [125I]1b-Fab'. Biodistributions of closo-decaborate(2-) conjugates ([125I]4-Fab'/[211At]4-Fab', [125I]6-Fab'/[211At]6-Fab', and [125I]7-Fab'/[211At]7-Fab') demonstrated that they were stable to in vivo deastatination and had distributions similar to that of the control [125I]1b-Fab'. In contrast, a benzyl-modified closo-decaborate(2-) derivative evaluated in vivo ([125I]5-Fab'/[211At]5-Fab') had a very different tissue distribution from the control. This study has shown that astatinated protein conjugates of closo-decaborate(2-) are quite stable to in vivo deastatination and that some derivatives have little effect on the distribution of Fab'. Additionally, direct 211At labeling of Fab' conjugated with closo-decaborate(2-) derivatives provide very high (e.g., 58-75%) radiochemical yields. However, in vivo data also indicate that the closo-decaborate(2-) may cause some retention of radioactivity in the liver. Studies to optimize the closo-decaborate(2-) conjugates for protein labeling are underway.  相似文献   

5.
An investigation has been conducted to prepare and evaluate several radiohalogenated biotin derivatives as part of our studies to develop reagents for carrying (211)At in cancer pretargeting protocols. The primary goal of the investigation was to determine the in vivo stability and distribution properties of astatinated biotin derivatives. In addition to astatination, the biotin derivatives were radioiodinated for in vitro and in vivo comparison. Biodistributions were conducted in athymic mice, with sacrifice times of 1, 4, and 24 h to correspond to 9%, 32%, and 90% of (211)At decay (t(1/2) = 7.21 h). In the investigation, two biotin derivatives, 1a and 2a, were synthesized which had structures that contain a biotin moiety, a biotinidase-blocking moiety, an ether linker moiety, and an aryl stannane moiety for radiohalogenation. Biotin derivatives 1a and 2a were radiolabeled with (125/131)I to give [(125)/(131)I]1b or [(125)I]2b and with (211)At to give [(211)At]1c or [(211)At]2c. In vivo studies demonstrated that co-injected [(125)I]2b and [(131)I]1b had very similar tissue distributions in athymic mice. Co-injection of [(211)At]2c and [(125)I]2b provided data that indicated that rapid deastatination occurred in vivo. A second set of biotin derivatives, 3a, 4a, and 5a, were synthesized which had structures that contain a biotin moiety, a biotinidase-blocking moiety, and an anionic nido-carborane moiety for radiohalogenation. The biotin derivatives 4a and 5a contained an aryl moiety not present in 3a, and 5a had a trialkylamine functionality not present in 3a or 4a. Biotin derivative 3a was radioiodinated, but was not further investigated. Biotin derivatives 4a and 5a were radiolabeled with (211)At and (125)I to produce [(125)I]4b/[(211)At]4c and [(125)I]5b/[(211)At]5c. Comparison of [(125)I]4b and (separately) [(125)I]5b with [(131)I]1b showed that the nido-carborane containing biotin derivatives were retained in blood and tissue more than the aryl iodide derivative. In vivo evaluations of [(211)At]4c/[(125)I]4b and (separately) [(211)At]5c/[(125)I]5b indicated that some deastatination occurred in these compounds, but it was much less than observed for the aryl derivative [(211)At]2c. While the nido-carborane containing biotin derivatives provide a significant improvement in astatine stability over biotin derivatives previously studied, additional derivatives need to be prepared and studied to further improve the in vivo stability and blood/tissue clearance of these compounds.  相似文献   

6.
A number of ring- and side-chain-substituted m-iodobenzylguanidine analogues were evaluated for their lipophilicity, in vitro stability, uptake by SK-N-SH human neuroblastoma cells in vitro, and biodistribution in normal mice. As expected, the lipophilicity of m-iodobenzylguanidine increased when a halogen was introduced onto the ring and decreased with the addition of polar hydroxyl, amino, and nitro substitutents. Most of the derivatives showed reasonable stability up to 24 h in PBS at 37 degrees C. While N(1)-hydroxy-N(3)-3-[(131)I]iodobenzylguanidine and 3,4-dihydroxy-5-[(131)I]iodobenzylguanidine generated a more nonpolar product in addition to the free iodide, 3-[(131)I]iodo-4-nitrobenzylguanidine decomposed to a product more polar than the parent compound. The specific uptake of 4-chloro-3-[(131)I]iodobenzylguanidine, 3-[(131)I]iodo-4-nitrobenzylguanidine, and N(1)-hydroxy-N(3)-3-[(131)I]iodobenzylguanidine by SK-N-SH human neuroblastoma cells in vitro, relative to that of m-[(125)I]iodobenzylguanidine, was 117 +/- 10%, 50 +/- 4%, and 12 +/- 2%, respectively. The specific uptake of the known m-iodobenzylguanidine analogues 4-hydroxy-3-[(131)I]iodobenzylguanidine and 4-amino-3-[(131)I]iodobenzylguanidine was 80 +/- 4% and 66 +/- 4%, respectively. None of the other m-iodobenzylguanidine derivatives showed any significant specific uptake by SK-N-SH cells. Heart uptake of 4-chloro-3-[(131)I]iodobenzylguanidine in normal mice was higher than that of m-[(125)I]iodobenzylguanidine at later time points (11 +/- 1% ID/g versus 3 +/- 1% ID/g at 24 h; p < 0.05) while uptake of 3-[(131)I]iodo-4-nitrobenzylguanidine and of N(1)-hydroxy-N(3)-3-[(131)I]iodobenzylguanidine in the heart was lower than that of m-iodobenzylguanidine at all time points. In accordance with the in vitro results, none of the other novel m-iodobenzylguanidine derivatives showed any significant myocardial or adrenal uptake in vivo.  相似文献   

7.
O(6)-Benzylguanine derivatives with suitable radionuclides attached to the benzyl ring are potentially useful in the noninvasive imaging of the DNA repair protein, alkylguanine-DNA alkyltransferase (AGT). Previously, O(6)-3-[(131)I]iodobenzylguanine ([(131)I]IBG) was prepared using a two-step approach; we now report its synthesis in a single step by the radioiododestannylation of O(6)-3-(trimethylstannyl)benzylguanine in 85-95% radiochemical yield. The in vitro specific uptake of [(131)I]IBG in DAOY human medulloblastoma cells, in TE-671 human rhabdomyosarcoma cells and a CHO cell line transfected to express AGT was linear (r(2) = 0.9-1.0) as a function of cell density. After intravenous injection of [(131)I]IBG in athymic mice bearing TE-671 xenografts, tumor uptake was 1.38 +/- 0.34% ID/g at 0.5 h and declined at 2 and 4 h. Preadministration of O(6)-(3-iodobenzyl)guanine (IBG) at 0.5 h increased uptake not only in tumor but also in several normal tissues. Notable exceptions were thyroid (p < 0.05), lung (p <0.05) and stomach. After intratumoral injection of [(131)I]IBG in the same xenograft model, the uptake in tumors that were depleted of AGT by BG treatment (165.8 +/- 27.5% ID/g) was about 60% of that in control mice (272.4 +/- 48.2% ID/g; p < 0.05).  相似文献   

8.
Radioiodinated meta-iodobenzylguanidine (MIBG) is used in the diagnosis and therapy of various neuroendocrine tumors. To investigate whether an additional guanidine function in the structure of MIBG will yield analogues that may potentially enhance tumor-to-target ratios, two derivatives-one with a guanidine moiety and another with a guanidinomethyl group at the 4-position of MIBG-were prepared. In the absence of any uptake-1 inhibiting conditions, the uptake of 4-guanidinomethyl-3-[(131)I]iodobenzylguanidine ([(131)I]GMIBG) by SK-N-SH cells in vitro was 1.7+/-0.1% of input counts, compared to a value of 40.3+/-1.4% for [(125)I[MIBG suggesting that guanidinomethyl group at the 4-position negated the biological properties of MIBG. On the other hand, 4-guanidino-3-[(131)I]iodobenzylguanidine ([(131)I]GIBG) had an uptake (5.6+/-0.3%) that was 12-13% that of [(125)I]MIBG (46.1+/-2.7%), and the ratio of uptake by control over DMI-treated (nonspecific) cultures was higher for [(131)I]GIBG (20.9+/-0.3) than [(125)I]MIBG itself (15.0+/-2.7). The exocytosis of [(131)I]GIBG and [(125)I]MIBG from SK-N-SH cells was similar. The uptake of [(131)I]GIBG in the mouse target tissues, heart and adrenals, as well as in a number of other tissues was about half that of [(125)I]MIBG. These results suggest that substitution of guanidine functions, especially a guanidinomethyl group, in MIBG structure may not be advantageous.  相似文献   

9.
Sugar conjugation of biooactive peptides has been shown to be a powerful tool to modulate peptide pharmacokinetics. In the case of radiolabeled somatostatin analogues developed for in vivo scintigraphy of somatostatin receptor (sst) expressing tumors, it generally led to tracers with predominant renal excretion and low uptake in nontarget organs, and in some cases also with enhanced tumor accumulation. Especially with respect to endoradiotherapeutic applicability of these tracers, however, understanding the structural requirements for minimal kidney accumulation and maximal tumor uptake is important. The aim of this study was therefore the evaluation of the potential of specific glycoside structures in combination with reduced peptide net charge to reduce kidney accumulation without affecting tumor accumulation. Three glyco analogues of radioiodinated Tyr(3)-octreotate (TOCA) with z = 0 were evaluated in a comparative study using [(125)I]Mtr-TOCA (z = +1), the maltotriose-Amadori analogue of [(125)I]TOCA, as a reference, [(125)I]Glucuron-TOCA, the Amadori conjugate with glucuronic acid, and [(125)I]Gluc-S- and [(125)I]Gal-S-TOCA, the coupling products with glucosyl- and mannosyl-mercaptopropionate. In cells transfected with sst(1)-sst(5), all three new analogues show sst-subtype binding profiles similar to I-Mtr-TOCA with high, but somewhat reduced, affinity for sst(2). In contrast, internalization into sst(2)-expressing cells (in % of [(125)I]Tyr(3)-octreotide ([(125)I]TOC)) as well as the EC(50,R) of unlabeled TOC for internalization determined in dual-tracer experiments are substantially enhanced for [(123)I]Gal-S-TOCA and [(123)I]Gluc-S-TOCA (internalization, 190% +/- 12% and 265% +/- 20%, respectively, vs 168% +/- 6% of [(125)I]TOC for [(123)I]Mtr-TOCA; EC(50,R), 2.62 +/- 0.07 and 2.96 +/- 0.14, respectively, vs 1.81 +/- 0.07 for [(123)I]Mtr-TOCA). The tumor accumulation of [(125)I]Gal-S-TOCA and [(125)I]Gluc-S-TOCA in AR42J tumor-bearing nude mice 1 h p.i. is consequently very high (22.6 +/- 2.2 and 26.2 +/- 5.6%ID/g) and comparable to that of [(125)I]Mtr-TOCA (25.1 +/- 4.4%ID/g). [(125)I]Glucuron-TOCA showed lower uptake in sst-expressing tissues than did [(125)I]Mtr-TOCA, but considerably enhanced accumulation in nontarget organs such as liver, intestine, and kidney. Due to increased lipophilicity, hepatic and intestinal uptake 1 and 4 h p.i. of [(125)I]Gal-S-TOCA and [(125)I]Gluc-S-TOCA was also slightly higher than that of [(125)I]Mtr-TOCA. Kidney accumulation, however, was reduced by approximately 50% for both compounds (2.6 +/- 0.3 and 2.2 +/- 0.4, respectively, vs 4.0 +/- 0.7%ID/g at 1 h p.i.). Because no sugar-specific effect was detected in the latter case, it is concluded that general ligand pharmacokinetics and especially kidney accumulation of the tracers investigated are mainly determined by physicochemical characteristics such as lipophilicity, net charge, and also charge distribution ([(125)I]Glucuron-TOCA vs [(125)I]Gal-S- and [(125)I]Gluc-S-TOCA). With respect to receptor targeting, however, the structure of the carbohydrate moiety plays an important role, leading to dramatically enhanced ligand internalization, especially in the case of [(123)I]Gluc-S-TOCA. Taking into account the combined effects of the Gluc-S-moiety both on kidney and on tumor accumulation, this group seems to be a promising synthon for the synthesis of other radiolabeled peptide analogues with improved pharmacokinetics.  相似文献   

10.
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.  相似文献   

11.
No-carrier-added 1-(m-[211At]astatobenzyl)guanidine ([211At]MABG) was synthesized by astato demetalation using two different routes. The overall yield for the two-step approach from 3-(tri-n-butylstannyl)benzylamine was 13%. N-Chlorosuccinimide-mediated astato desilylation of 1-[3-(trimethylsilyl)benzyl]guanidine in acetic acid gave poor yields. In trifluoroacetic acid, the reaction worked well. The radiochemical yield was independent of reaction time and the amount of precursor used; however, the temperature of the reaction had a marked effect. Yields of 85% were obtained in 5 min at 70 degrees C using 0.5 mumol of the precursor. The percentage specific binding in vitro of [211At]MABG was nearly constant over a 2-log activity range and was comparable to that of no-carrier-added [131]MIBG. The accumulation of [211At]MABG in the heart and adrenals of normal mice was similar to that observed for no-carrier-added [131]MIBG.  相似文献   

12.
[125I]IodoDPA-713 [125I]1, which targets the translocator protein (TSPO, 18 kDa), was synthesized in seven steps from methyl-4-methoxybenzoate as a tool for quantification of inflammation in preclinical models. Preliminary in vitro autoradiography and in vivo small animal imaging were performed using [125I]1 in a neurotoxicant-treated rat and in a murine model of lung inflammation, respectively. The radiochemical yield of [125I]1 was 44 ± 6% with a specific radioactivity of 51.8 GBq/μmol (1400 mCi/μmol) and >99% radiochemical purity. Preliminary studies showed that [125I]1 demonstrated increased specific binding to TSPO in a neurotoxicant-treated rat and increased radiopharmaceutical uptake in the lungs of an experimental inflammation model of lung inflammation. Compound [125I]1 is a new, convenient probe for preclinical studies of TSPO activity.  相似文献   

13.
The clinical importance of somatostatin type-2 receptors (SSTR2) and the study of novel analogues of somatostatin such as OctreoScan or [Tyr3]-octreotide containing DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) as metal chelator led us to develop a methodology to monitor the expression of SSTR2 on tumours of pancreatic origin (e.g. rat AR4-2J cancer cells). Usual binding assay protocols using the commercial [125I][Tyr1]-somatostatin radioligand failed, even in the presence of a cocktail of protease inhibitors with a broad spectrum of activity, possibly due to the high susceptibility of this tracer to proteases expressed in pancreatic cells. We prepared our own radioligand [125I][Tyr2]-octreotide which was shown to be much more resistant to degradation after incubation with AR4-2J plasma membranes. As expected, the increased stability of [125I][Tyr3]-octreotide was associated with good binding to SSTR2. Addition of appropriate protease inhibitors further increased the specific binding of [125I][Tyr3]-octreotide to AR4-2J plasma membranes without affecting the stability of the tracer, suggesting that the protease inhibitors also protect the integrity of SSTR2. Optimal conditions (time, temperature, medium) were developed for a binding assay in 96-well plates using AR4-2J plasma membranes in order to make the assay suitable for high-throughput analysis. This protocol was the basis for studying the in vivo regulation of SSTR2 expression in AR4-2J cells implanted into scid mice after exposure to different compounds.  相似文献   

14.
Isolated thyroid cells prepared from hog thyroid glands by tryptic dispersion were incubated with 131I for 1–6 h. Free [131I]thyroxine was identified in the incubation medium by three chromatographic methods. Neither [131I]iodotyurosines nor [131I]triiodothyronine were detected. The [131I]thyroxine released in the medium by 100 μl of cells (packed cell volume) after a 6-h incubation period amounted to 1.16% (S.E. = ± 0.39) of the total radioactivity. The medium [131I]thyroxine represented 15–25% of the total [131I]thyroxine synthesized during the 6 h of incubation. Thyrotropin, 1–60 munits/ml, increased the medium [131I]thyroxine content 2–4 fold. Dibutyryl cyclic AMP mimicked the effect of thyrotropin. The amount of medium [131I]thyroxine was strictly related to the amount of incubated cells but was independent of the volume of the incubation medium. When prelabeled cells were incubated in the presence of methimazole the increase in medium [131I]thyroxine was quantitatively related to a decrease in the intracellular [131I]thyroxine. Addition of dinitrotyrosine, an inhibitor of the deiodinase activity, induced the release of iodotyrosines in the incubation medium. That the incubation supernatant of isolated thyroid cells did contain free thyroxine but no iodotyrosines suggests that the normal mechanisms of proteolysis of thyroglobulin and deiodination of iodotyrosines inside the cells are preserved. From these data, it was concluded that the thyroxine release by isolated cells represents a real secretion.  相似文献   

15.
Endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) binds with high affinity and selectivity to the mu-opioid receptor. In the present study, [125I]endomorphin-2 has been used to characterize mu-opioid-binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin-2 (1 nM) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (K(d) = 18.79 +/- 1.13 nM, B(max) = 635 +/- 24 fmol/mg protein) and the other shows low affinity and higher capacity (K(d) = 7.67 +/- 0.81 microM, B(max) = 157 +/- 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin-2 binding site was [d-1-Nal3]morphiceptin > endomorphin-2 > [d-Phe3]morphiceptin > morphiceptin > [d-1-Nal3]endomorphin-2, indicating binding of these peptides to mu-opioid receptors. The uptake of 131I-labeled peptides administered intraperitoneally to tumor-bearing mice was also investigated. The highest accumulation in the tumor was observed for [d-1-Nal3)morphiceptin, which reached the value of 8.19 +/- 1.14% dose/g tissue.  相似文献   

16.
Numerous studies have reported diverse effects of gut-derived regulatory peptides on growth of the normal pancreas, pancreatic neoplasms induced experimentally in animals, and pancreatic cancer cell lines, but the results of these investigations are rather controversial. The stimulatory effect of epidermal growth factor (EGF) on cell proliferation of pancreatic cell lines is well established. Whether this action can be modulated by somatostatin is not clear. Furthermore, it is not certain whether another regulatory peptide, cholecystokinin (CCK), affects the proliferation of these cells. In the present study we investigated the presence of CCK-A and CCK-B, as well as somatostatin-2 (SSTR2) receptors by RT-PCR, and studied the actions of EGF, CCK and octreotide on DNA synthesis in the human pancreatic adenocarcinoma cell line Capan-2. Octreotide, a long-acting somatostatin analogue was used as somatostatin agonist. Cells were cultured in RPMI-1640 medium. They were incubated in serum free medium containing 0.2% BSA in the absence (control) or the presence of the peptides. [3H]-thymidine incorporation into DNA was measured after 48 h of incubation. By means of RT-PCR analysis we were able to demonstrate SSTR2 expression, but not CCK-A or CCK-B receptor mRNA in Capan-2 cells. DNA synthesis evaluated by [3H]-thymidine incorporation was found to be increased by 45.2 +/- 5.6% in response to EGF (10(-8) M) and decreased by 11.7 +/- 2.6% to octreotide (10(-8) M) compared to controls (P < 0.01). The increase in [3H]-thymidine incorporation was significantly lower when EGF treatment was combined with octreotide administration (10.1 +/- 2.5% over control). In the concentration range of 10(-11)-10(-8) M, CCK did not alter significantly the incorporation of [3H]-thymidine into DNA in Capan-2 cells. In conclusion, these data support a role for EGF as a growth factor for the human pancreatic cancer cell Capan-2. Somatostatin may play an important role in regulating cell proliferation in Capan-2 cells both under basal, and growth factor-stimulated conditions. Our results suggest, however, that CCK receptors are not expressed, and CCK does not affect cell proliferation in this transformed pancreatic cell line.  相似文献   

17.
Evaluation of monoclonal antibody (mAb) fragments (e.g., Fab', Fab, or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 ((211)At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the (211)At label, generally a meta- or para-[(211)At]astatobenzoyl conjugate, on mAb Fab' fragments can be dramatically improved by the use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled mAb Fab' conjugates appears to result in retention of radioactivity in the kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of an acid-cleavable hydrazone between the Fab' and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality, and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete poly(ethylene glycol) (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole, or methyl) to provide varying acid sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated ((125)I or (131)I), then conjugated with an anti-PSMA Fab' (107-1A4 Fab'). Biodistributions of the five radioiodinated Fab' conjugates were obtained in nude mice at 1, 4, and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab' through a noncleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver, and spleen that were similar to those obtained with directly radioiodinated Fab' (i.e., no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate substituent on the hydrazone was chosen for study with (211)At. That reagent was conjugated with 107-1A4 Fab', then labeled (separately) with (125)I and (211)At. The radiolabeled Fab' conjugates were coinjected into nude mice bearing LNCaP human tumor xenografts, and biodistribution data were obtained at 1, 4, and 24 h pi. Tumor targeting was achieved with both (125)I- and (211)At-labeled Fab', but the (211)At-labeled Fab' reached a higher concentration (25.56 ± 11.20 vs 11.97 ± 1.31%ID/g). Surprisingly, while the (125)I-labeled Fab' was cleared from kidney similar to earlier studies, the (211)At-labeled Fab'was not (i.e., kidney conc. for (125)I vs (211)At; 4 h, 13.14 ± 2.03 ID/g vs 42.28 ± 16.38%D/g; 24 h, 4.23 ± 1.57 ID/g vs 39.52 ± 15.87%ID/g). Since the Fab' conjugate is identical in both cases except for the radionuclide, it seems likely that the difference in tissue clearance seen is due to an effect that (211)At has on either the hydrazone cleavage or on the retention of a metabolite. Results from other studies in our laboratory suggest that the latter case is most likely. The hydrazone linkers tested do not provide the tissue clearance sought for (211)At, so additional hydrazones linkers will be evaluated. However, the results support the use of hydrazone linkers when Fab' conjugated with closo-decaborate(2-) reagents are radioiodinated.  相似文献   

18.
The goal of this study was to evaluate a new approach that can be applied for labeling biomolecules with (211)At. Many astatine compounds that have been synthesized are unstable in vivo, providing motivation for seeking different (211)At labeling strategies. The approach evaluated in this study was to attach astatide anions to soft metal cations, which are also complexed by a bifunctional ligand. Ultimately, this complex could in principle be subsequently conjugated to a biomolecule with the proper selection of ligand functionality. We report here the attachment of (211)At(-) and *I(-) (*I = (131)I or (125)I) anions to the soft metal cations Rh(III) and Ir(III), which are complexed by the 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (16aneS4-diol) ligand. Radioactive *I(-) anions were used for preliminary studies directed at the optimization of reaction conditions and to provide a baseline for comparison of results with (211)At. Four complexes Rh[16aneS4-diol]*I/(211)At and Ir[16aneS4-diol]*I/(211)At were synthesized in high yield in a one-step procedure, and the products were characterized mainly by paper electrophoresis and reversed-phase HPLC. The influences of time and temperature of heating and concentrations of metal cations and sulfur ligand 16aneS4-diol, as well as pH on the reaction yields were determined. Yields of about 80% were obtained when the quantities of Rh(III) or Ir(III) cations and 16aneS4-diol ligand in the solutions were 62.5 nmol and 250 nmol, respectively, and the pH ranged 3.0-4.0. Syntheses required heating for 1-1.5 h at 75-80 degrees C. The influence of microwave heating on the time and completeness of the complexation reaction was evaluated and compared with the conventional method of heating in an oil bath. Microwave synthesis accelerates reactions significantly. With microwave heating, yields of about 75% for Rh[16aneS4-diol](131)I and Ir[16aneS4-diol](131)I complexes were obtained after only 20 min exposure of the reaction mixtures to microwave radiation. In conclusion, this study has shown that it is possible to attach an astatide anion to soft metal cations in a simple and fast one-step procedure, with high yields. These complexes will be evaluated as reagents for labeling biomolecules.  相似文献   

19.
125I-containing compounds that react specifically with sulfhydryl groups were prepared in yields of 30 to 40% on the basis of starting 125I quantity. The synthetic precursors were commercially available heterobifunctional crosslinkers and the peptide L-arginyl-L-tyrosine. Two types of sulfhydryl specific reagents were prepared: 3-(2-pyridyldithio)propionylarginyl-[125I]-monoiodotyrosine, which permits reversible incorporation of 125I at sulfhydryl sites, and 3-maleimidopropionylarginyl- [125I]monoiodotyrosine, an irreversible labeling reagent. These products were isolated in a highly radiochemically pure form by C18 HPLC. The second-order rate constants for the reaction of 3-(2-pyridyldithio)propionylarginylmonoiodotyrosine and 3-maleimidopropionylarginylmonoiodotyrosine with N-acetylcysteine were 28 +/- 3 M-1 s-1 and 154 +/- 4 M-1 s-1, respectively, at pH 7.3. Storage of carrier-free 3-(2-pyridyldithio)propionylarginyl-[125I]monoiodotyrosine and 3-maleimidopropionylarginyl-[125I]monoiodotyrosine at -80 degrees C at a radioactive concentration of 0.4 mCi/ml resulted in conversion of 125I to species that did not react covalently with sulfhydryl groups. This process occurred with first-order kinetics and a t1/2 of 5.7 days for the pyridyldithio compound and 7.5 days for the maleimido compound. No conversion was observed during storage at -80 degrees C at radioactive concentrations of 0.02 mCi/ml or less. The labeling properties of these compounds were examined using red blood cell proteins as a test system. 3-(2-Pyridyldithio)propionylarginyl- [125I]monoiodotyrosine and maleimidopropionylarginyl-[125I]monoiodotyrosine reacted preferentially with membrane - associated sulfhydryl groups when incubated with intact red blood cells.  相似文献   

20.
Survivin, overexpressed in most cancers, is associated with poor prognosis and resistance to radiation therapy and chemotherapy. Herein, we report the synthesis of three 3-phenethyl-2-indolinone derivatives and their application as in vivo imaging agents for survivin. Of these, 3-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)-3-hydroxy-5- iodoindolin-2-one (IPI-1) showed the highest binding affinity (Kd?=?68.3?nM) to recombinant human survivin, as determined by quartz crystal microbalance (QCM). In vitro studies demonstrated that the [125I]IPI-1 binding in survivin-positive MDA-MB-231 cells was significantly higher than that in survivin-negative MCF-10A cells. In addition, uptake of [125I]IPI-1 by MDA-MB-231 cells decreased in a dose-dependent manner in the presence of the high-affinity survivin ligand S12; this is indicative of specific binding of [125I]IPI-1 to cellular survivin protein in vitro. Biodistribution studies in MDA-MB-231 tumor-bearing mice demonstrated the moderate uptake of [125I]IPI-1 in the tumor tissue (1.37%?ID/g) at 30?min that decreased to 0.32%?ID/g at 180?min. Co-injection of S12 (2.5?mg/kg) slightly reduced tumor uptake and the tumor/muscle ratio of [125I]IPI-1. Although further structural modifications are necessary to improve pharmacokinetic properties, our results indicate that PI derivatives may be useful as tumor-imaging probes targeting survivin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号