首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groups of lean or pre-obese LA/N-cp rats were subjected to a program of vigorous exercise (less than 4 hr/day) or remained sedentary from 6 weeks until 12 weeks of age. Sedentary pre-obese rats gained weight twice as rapidly as sedentary lean rats. Exercise treatment resulted in greater decrements in body wt in obese than in lean rats, but did not result in absolute weight loss in either group. At 12 weeks of age, fat pad weights in principle depots were 10-15 times greater in corpulent than in lean rats and were significantly smaller in the exercised groups of both phenotypes, and corresponded with lower relative adiposity compared to corresponding sedentary groups. Heart weights were greater in corpulent than lean, while gastrocnemius muscle weights were similar in both phenotypes. Exercise was without effect on the weight of either muscle tissue in either phenotype. Interscapular brown adipose tissue weights and the IBAT:BW ratio were greater in obese than in lean rats. IBAT weights were lower in exercised than sedentary rats of either phenotype, but the IBAT:BW ratio was lower only in the obese exercised rats. In sedentary rats, L-alpha-glycerophosphate dehydrogenase and malic enzyme activity were greater in obese than lean, and exercise treatment resulted in increased L-alpha-glycerophosphate dehydrogenase and malic enzyme only in lean rats. These results are consistent with a redistribution of energy expenditure from energy storing to energy dissipating pathways following vigorous exercise, resulting in slowed rates of weight gain and body fat accretion in both lean and obese animals, with the most significant decrements among pre-obese rats.  相似文献   

2.
An understanding of the physiological and behavioral determinants of resting energy requirements is important to nutritional considerations in females. We examined the influence of endurance training and self-reported dietary restraint on resting metabolic rate and fasting plasma hormones in 44 nonobese females characterized for body composition, maximal aerobic power (VO2 max), and daily energy intake. To examine the association of metabolic rate and dietary restraint with hormonal status, fasting plasma levels of insulin, glucose, and thyroid hormones (total and free fractions of thyroxine and triiodothyronine) were determined. In univariate analysis, resting metabolic rate (kcal.min-1) was positively related to VO2 max (L.min-1) (r = 0.54; p less than 0.01). This relationship, however, was partially dependent on body size, since fat-free mass was also related to resting metabolic rate (r = 0.42; p less than 0.01) and VO2 max (L.min-1) (r = 0.75; p less than 0.01). After controlling for fat-free weight using partial correlation analysis, the relation between RMR and VO2 max was weaker but controlling for fat-free weight using partial correlation analysis, the relation between RMR and VO2 max was weaker but still significant (partial r = 0.38; p less than 0.05). On the other hand, high levels of dietary restraint were associated with higher levels of body fat (r = 0.31; p less than 0.05) and a lower resting metabolic rate (r = -0.29; p = 0.07). These associations persisted after control for differences in fat-free mass. Total energy intake as well as total and free levels of triiodothyronine were not related to resting metabolic rate or level of dietary restraint.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Genes influencing resting energy expenditure (REE) and respiratory quotient (RQ) represent candidate genes for obesity and the metabolic syndrome because of the involvement of these traits in energy balance and substrate oxidation. We aim to explore the molecular basis for individual variation in REE and fuel partitioning as reflected by RQ. We performed microarray studies in human vastus lateralis muscle biopsies from 40 healthy subjects with measured REE and RQ values. We identified 2,392 and 1,115 genes significantly correlated with REE and RQ, respectively. Genes correlated with REE and RQ encompass a broad array of functions, including carbohydrate and lipid metabolism, gene expression, mitochondrial processes, and membrane transport. Microarray pathway analysis revealed that REE was positively correlated with upregulation of G protein-coupled receptor signaling (meet criteria/total genes: 65 of 283) involved in autonomic nervous system functions, including those receptors mediating adrenergic, dopamine, γ-aminobutyric acid (GABA), neuropeptide Y (NPY), and serotonin action (meet criteria/total genes: 46 of 176). Reduced REE was associated with an increase in genes participating in ubiquitin-proteasome-dependent proteolytic pathways (58 of 232). Serine-type peptidase activity (9 of 76) was positively correlated with RQ, while genes involved in the protein phosphatase type 2A complex (4 of 9), mitochondrial function and cellular respiration (38 of 315), and unfolded protein binding (19 of 97) were associated with reduced RQ values and a preference for lipid fuel metabolism. Individual variations in whole body REE and RQ are regulated by differential expressions of specific genes and pathways intrinsic to skeletal muscle.  相似文献   

4.
Plasma testosterone (T) levels in male dark-eyed juncos peak early in the breeding season, then decline. If T enhances opportunities for reproductive success, as suggested by previous experiments, why does elevated T not occur naturally? To address this question, we prolonged the early peak level throughout the breeding season and explored potential energetic costs of maintaining elevated T. We measured daily energy expenditure (DEE) of treated males (T-males) and controls (C-males) using doubly labelled water (DLW). We also conducted behaviour scans of T- and C-males housed in outdoor aviaries. DEE was not higher in T-males than in C-males. However, T-males did increase locomotion and foraging and decrease rest and self-maintenance. These results suggest that elevated T may increase the contribution of some components of DEE and lower the contribution of others. Furthermore, the T-induced decrease in allocation of time to rest and maintenance may represent a long-term cost that has led to selection against the maintenance of elevated T beyond the natural early spring peak. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

5.
Prolactin, which induced significant gain in body weight and in the weight of the cervical and abdominal fat deposits had no effect on daily total food intake in spotted munia. The hormone changed the feeding pattern from a modal type to almost continuous feeding, increased whole body oxygen consumption of the birds, and had no effect on total hopping index. Prolactin-induced fattening, therefore seems due to neither an increased caloric intake, nor a decreased metabolic expenditure, but probably reflects better utilization of food.  相似文献   

6.
We compared the physical activity of 11 lean and 11 obese men and women over a 7-day period. There were no significant differences in either the amount of movement recorded with an accelerometer (9.5 (SD 3.9) vs 9.9 (SD 2.6) kcounts.day-1), or in the energy expenditure due to physical activity reflected by the difference between the average daily metabolic rate measured by the doubly labelled water technique and the sleeping metabolic rate measured in a respiration chamber and adjusted for fat-free mass: 112 (SD 33) vs 118 (SD 22) kJ.kg-1.day-1. The obese showed a non-significant loss of body mass of 0.5 (SD 1.1) kg, probably due to reduced intake during the 7-day intake recording period.  相似文献   

7.
8.
Physical activity (PA) is a main determinant of total energy expenditure (TEE) and has been suggested to play a key role in body weight regulation. However, thus far it has been challenging to determine what part of the expended energy is due to activity in freely moving subjects. We developed a computational method to estimate activity related energy expenditure (AEE) and resting metabolic rate (RMR) in mice from activity and indirect calorimetry data. The method is based on penalised spline regression and takes the time dependency of the RMR into account. In addition, estimates of AEE and RMR are corrected for the regression dilution bias that results from inaccurate PA measurements. We evaluated the performance of our method based on 500 simulated metabolic chamber datasets and compared it to that of conventional methods. It was found that for a sample time of 10 minutes the penalised spline model estimated the time-dependent RMR with 1.7 times higher accuracy than the Kalman filter and with 2.7 times higher accuracy than linear regression. We assessed the applicability of our method on experimental data in a case study involving high fat diet fed male and female C57Bl/6J mice. We found that TEE in male mice was higher due to a difference in RMR while AEE levels were similar in both groups, even though female mice were more active. Interestingly, the higher activity did not result in a difference in AEE because female mice had a lower caloric cost of activity, which was likely due to their lower body weight. In conclusion, TEE decomposition by means of penalised spline regression provides robust estimates of the time-dependent AEE and RMR and can be applied to data generated with generic metabolic chamber and indirect calorimetry set-ups.  相似文献   

9.
Two observations favor the presence of a lower mass-specific resting energy expenditure (REE/weight) in taller adult humans: an earlier report of height (H)-related differences in relative body composition; and a combined model based on Quetelet and Kleiber's classic equations suggesting that REE/weight proportional, variantH(-0.5). This study tested the hypothesis stating that mass-specific REE scales negatively to height with a secondary aim exploration of related associations between height, weight (W), surface area (SA), and REE. Two independent data sets (n = 344 and 884) were evaluated, both with REE measured by indirect calorimetry and the smaller of the two including fat estimates by dual-energy X-ray absorptiometry. Results support Quetelet's equation (W proportional, variantH(2)), but Kleiber's equation approached the interspecific mammal form (REE proportional, variantW(0.75)) only after adding adiposity measures to weight and age as REE predictors. REE/weight scaled as H( approximately (-0.5)) in support of the hypothesis with P values ranging from 0.17 to <0.001. REE and SA both scaled as H( approximately 1.5), and REE/SA was nonsignificantly correlated with height in all groups. These observations suggest that adiposity needs to be considered when evaluating the intraspecific scaling of REE to weight; that relative to their weight, taller subjects require a lower energy intake for replacing resting heat losses than shorter subjects; that fasting endurance, approximated as fat mass/REE, increases as H(0.5); and that thermal balance is maintained independent of stature by evident stable associations between resting heat production and capacity of external heat release. These observations have implications for the modeling of adult human energy requirements and associate with anthropological concepts founded on body size.  相似文献   

10.
The current study was undertaken to address responsiveness of skeletal muscle mitochondrial electron transport chain (ETC) activity to weight loss (WL) and exercise in overweight or obese, sedentary volunteers. Fourteen middle-aged participants (7 male/7 female) had assessments of mitochondrial ETC activity and mitochondrial (mt)DNA in vastus lateralis muscle, obtained by percutaneous biopsy, before and after a 16-wk intervention. Mean WL was 9.7 (1.5%) and the mean increase in Vo(2 max) was [means (SD)] 21.7 (3.7)%. Total ETC activity increased significantly, from 0.13 (0.02) to 0.19 (0.03) U/mU creatine kinase (CK; P < 0.001). ETC activity was also assessed in mitochondria isolated into subsarcolemmal (SSM) and intermyofibrillar (IMF-M) fractions. In response to intervention, there was a robust increase of ETC activity in SSM (0.028 (0.007) to 0.046 (0.011) U/mU CK, P < 0.001), and in IMF-M [0.101 (0.015) to 0.148 (0.018) U/mU CK, P < 0.005]. At baseline, the percentage of ETC activity contained in the SSM fraction was low and remained unchanged following intervention [19 (3) vs. 22 (2)%], despite the increase in ETC activity. Also, muscle mtDNA content did not change significantly [1665 (213) vs. 1874 (214) mtDNA/nuclear DNA], denoting functional improvement rather than proliferation of mitochondria as the principal mechanism of enhanced ETC activity. Increases in ETC activity were correlated with energy expenditure during exercise sessions, and ETC activity in SSM correlated with insulin sensitivity after adjustment for Vo(2 max). In summary, skeletal muscle ETC activity is increased by WL and exercise in previously sedentary obese men and women. We conclude that improved skeletal muscle ETC activity following moderate WL and improved aerobic capacity contributes to associated alleviation of insulin resistance.  相似文献   

11.
On the basis of the results of our studies and literature data, an analysis of the physiological mechanisms responsible for the multifold increase in the physical working capacity during human development has been performed. Physiological and biochemical studies have shown that the aerobic energy system already has a high capacity during the second period of childhood, and the further increase in working capacity is mainly provided by the development of anaerobic mechanisms of energy supply. The maturation of mechanisms of energy production is related to considerable changes in the activity of tissue enzymes and radical rearrangement of the composition of muscular fibers. Puberty considerably influences the development of anaerobic muscle energetics in boys due to stimulation of the growth of type II fibers by testosterone. It has been shown that widespread tests for assessment of physical working capacity mainly reflect changes in the power of energy systems and only in rare cases may be used to characterize changes in their capacity. However, the capacity parameters, which depend to a greater extent on the quality of regulation at the cellular, tissue, and body levels, show multifold growth during ontogeny, which corresponds to the actual increase in the working capacity in the period from childhood to youth. A classification of tests of physical working capacity is proposed. The use and development of this classification may facilitate the development of new tests and an increased efficiency of testing involved in solving various applied and fundamental problems.  相似文献   

12.
Resting energy expenditure (REE) and components of fat-free mass (FFM) were assessed in 26 healthy nonobese adults (13 males, 13 females). Detailed body composition analyses were performed by the combined use of dual-energy X-ray absorptiometry (DEXA), magnetic resonance imaging (MRI), bioelectrical impedance analysis (BIA), and anthropometrics. We found close correlations between REE and FFM(BIA) (r = 0.92), muscle mass(DEXA) (r = 0.89), and sum of internal organs(MRI) (r = 0.90). In a multiple stepwise regression analysis, FFM(BIA) alone explained 85% of the variance in REE (standard error of the estimate 423 kJ/day). Including the sum of internal organs(MRI) into the model increased the r(2) to 0.89 with a standard error of 381 kJ/day. With respect to individual organs, only skeletal muscle(DEXA) and liver mass(MRI) significantly contributed to REE. Prediction of REE based on 1) individual organ masses and 2) a constant metabolic rate per kilogram organ mass was very close to the measured REE, with a mean prediction error of 96 kJ/day. The very close agreement between measured and predicted REE argues against significant variations in specific REEs of individual organs. In conclusion, the mass of internal organs contributes significantly to the variance in REE.  相似文献   

13.
The purpose of this study is to find out the differences in physical activity (PA), energy expenditure (EE) and energy intake (EI) under free-living conditions between Japanese prepubertal obese and nonobese boys. The subjects were 15 prepubertal obese boys (Age: 11.7+/-0.4 years old, Body fat: 35.2+/-1.6%) who do not have obese parents and siblings and 15 prepubertal nonobese boys (Age: 11.8+/-0.4 years old, Body fat: 18.5+/-0.8%). We assessed their daily PA by heart rate (HR) monitoring, pedometer step counts (PSC) and time for sedentary activities (SA). We also examined calculated EE from HR-VO(2) regression, EI and percentage of macronutrient EI. Results are as follows: Percentage of body fat had significant correlation with weight, BMI, time for SA, percentage EI of protein (positive, p<0.001), VO(2max), VO(2max) per body weight, VO(2max) per LBM, PSC, TEE per body weight, TEI per body weight (negative, p<0.001), percentage of EI of carbohydrate (negative, p<0.01). The values of the obese were significantly lower in total EE per body weight and in total EI per body weight. EI from dinner was significantly higher in the obese group. The values of the obese were significantly higher in percentage EI from protein and that from carbohydrate. The results of this study showed prepubertal obese boys who do not have obese parents and siblings have low PA and spend much time for sedentary activities. Obese boys consume higher percentage energy of protein and lower percentage of carbohydrate though differences in EE and EI were found only in total EE per body weight and total EI per body weight between obese boys and nonobese boys.  相似文献   

14.
L Wells  K A Edwards    S I Bernstein 《The EMBO journal》1996,15(17):4454-4459
Myosin heavy chain (MHC) is the motor protein of muscle thick filaments. Most organisms produce many muscle MHC isoforms with temporally and spatially regulated expression patterns. This suggests that isoforms of MHC have different characteristics necessary for defining specific muscle properties. The single Drosophila muscle Mhc gene yields various isoforms as a result of alternative RNA splicing. To determine whether this multiplicity of MHC isoforms is critical to myofibril assembly and function, we introduced a gene encoding only an embryonic MHC into Drosophila melanogaster. The embryonic transgene acts in a dominant antimorphic manner to disrupt flight muscle function. The transgene was genetically crossed into an MHC null background. Unexpectedly, transformed flies expressing only the embryonic isoform are viable. Adult muscles containing embryonic MHC assemble normally, indicating that the isoform of MHC does not determine the dramatic ultrastructural variation among different muscle types. However, transformed flies are flightless and show reduced jumping and mating ability. Their indirect flight muscle myofibrils progressively deteriorate. Our data show that the proper MHC isoform is critical for specialized muscle function and myofibril stability.  相似文献   

15.
The aims of the present study were twofold: first to investigate whether TCA cycle intermediate (TCAI) pool expansion at the onset of moderate-intensity exercise in human skeletal muscle could be enhanced independently of pyruvate availability by ingestion of glutamine or ornithine alpha-ketoglutarate, and second, if it was, whether this modification of TCAI pool expansion had any effect on oxidative energy status during subsequent exercise. Seven males cycled for 10 min at approximately 70% maximal O2) uptake 1 h after consuming either an artificially sweetened placebo (5 ml/kg body wt solution, CON), 0.125 g/kg body wt L-(+)-ornithine alpha-ketoglutarate dissolved in 5 ml/kg body wt solution (OKG), or 0.125 g/kg body wt L-glutamine dissolved in 5 ml/kg body wt solution (GLN). Vastus lateralis muscle was biopsied 1 h postsupplement and after 10 min of exercise. The sum of four measured TCAI (SigmaTCAI; citrate, malate, fumarate, and succinate, approximately 85% of total TCAI pool) was not different between conditions 1 h postsupplement. However, after 10 min of exercise, SigmaTCAI (mmol/kg dry muscle) was greater in the GLN condition (4.90 +/- 0.61) than in the CON condition (3.74 +/- 0.38, P < 0.05) and the OKG condition (3.85 +/- 0.28). After 10 min of exercise, muscle phosphocreatine (PCr) content was significantly reduced (P < 0.05) in all conditions, but there was no significant difference between conditions. We conclude that the ingestion of glutamine increased TCAI pool size after 10 min of exercise most probably because of the entry of glutamine carbon at the level of alpha-ketoglutarate. However, this increased expansion in the TCAI pool did not appear to increase oxidative energy production, because there was no sparing of PCr during exercise.  相似文献   

16.
Caspase 2 was initially identified as a neuronally expressed developmentally down-regulated gene (HUGO gene nomenclature CASP2) and has been shown to be required for neuronal death induced by several stimuli, including NGF (nerve growth factor) deprivation and Aβ (β-amyloid). In non-neuronal cells the PIDDosome, composed of caspase 2 and two death adaptor proteins, PIDD (p53-inducible protein with a death domain) and RAIDD {RIP (receptor-interacting protein)-associated ICH-1 [ICE (interleukin-1β-converting enzyme)/CED-3 (cell-death determining 3) homologue 1] protein with a death domain}, has been proposed as the caspase 2 activation complex, although the absolute requirement for the PIDDosome is not clear. To investigate the requirement for the PIDDosome in caspase-2-dependent neuronal death, we have examined the necessity for each component in induction of active caspase 2 and in execution of caspase-2-dependent neuronal death. We find that both NGF deprivation and Aβ treatment of neurons induce active caspase 2 and that induction of this activity depends on expression of RAIDD, but is independent of PIDD expression. We show that treatment of wild-type or PIDD-null neurons with Aβ or NGF deprivation induces formation of a complex of caspase 2 and RAIDD. We also show that caspase-2-dependent execution of neurons requires RAIDD, not PIDD. Caspase 2 activity can be induced in neurons from PIDD-null mice, and NGF deprivation or Aβ use caspase 2 and RAIDD to execute death of these neurons.  相似文献   

17.
Body fat distribution and abdominal fatness are indicators of risks for coronary heart disease. However, the relationships between resting energy expenditure (REE) and the body fat distribution or the abdominal fatness are unclear. We examined the relationships of REE with whole-body fat distribution (waist, hip and waist-to-hip ratio: WHR) and abdominal fatness (intra-abdominal fat: IF and subcutaneous fat: SF) after adjustment for body composition. 451 men and 471 women were subdivided into two groups, 40-59 years: middle-aged group and 60-79 years: elderly group. REE was measured by an indirect calorimetry system. Percentage of fat mass (%FM), fat mass (FM) and fat-free mass (FFM) were assessed by a dual-energy x-ray absorptiometry method. The IF area (IFA) and SF area (SFA) at the level of the umbilicus were measured using computed tomography. Circumference of waist and hip were measured in a standing position. The WHR, waist circumference and SFA did not significantly (p>0.05) associate with the REE after adjusting for FM, FFM and age in any of the groups. The adjusted REE was significantly and inversely correlated with hip (r=-0.159, p<0.05) and IFA (r=-0.131, p<0.05) in the elderly men. These results suggest that lower REE may contribute to greater hip and IFA rather than WHR and waist in elderly men.  相似文献   

18.
19.
Thyroid hormone excess is associated with increased energy expenditure. The contributions of increases in spontaneous physical activity and nonexercise activity thermogenesis (NEAT) to this effect have not been defined. To address the hypothesis that hyperthyroidism is associated with increased spontaneous physical activity and NEAT, we rendered rats hyperthyroid by using continuous infusion of high-dose triiodothyronine for 14 days and measured the effects on physical activity and NEAT. On day 14, in the hyperthyroid group the mean +/- SD triiodothyronine concentration was 755 +/- 137 (range 574-919) ng/dl and in the control group 59 +/- 0.5 (58-59) ng/dl. Over the 14-day treatment period, mean spontaneous physical activity increased in the hyperthyroid rats from 24 +/- 7 to 36 +/- 6 activity units (AU)/min; P < 0.001 but did not increase in the controls (23 +/- 7 vs. 22 +/- 4 AU/min). Also, over the 14-day period, daily NEAT increased in the hyperthyroid rats from 8.1 +/- 2.8 to 19.7 +/- 5.0 kcal/day (P < 0.001) but did not increase in the controls (8.7 +/- 3.5 cf 9.4 +/- 1.7 kcal/day; not significant). In conclusion, hyperthyroidism is associated with increased spontaneous physical activity and NEAT.  相似文献   

20.
A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that “the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy”. However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号