首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The frequency of sister chromatid exchanges (SCEs) was determined for the chromosomes (except Y2) of the Indian muntjac stained by the fluorescence plus Giemsa (FPG) or harlequin chromosome technique. The relative DNA content of each of the chromosomes was also measured by scanning cytophotometry. After growth in bromodeoxyuridine (BrdU) for two DNA replication cycles. SCEs were distributed according to the Poisson formula in each of the chromosomes. The frequency of SCE in each of the chromosomes was directly proportional to DNA content. A more detailed analysis of SCEs was performed for the three morphologically distinguishable regions of the X-autosome composite chromosome. The SCE frequency in the euchromatic long arm and short arm were proportional to the amount of DNA. In contrast, the constitutive heterochromatin in the neck of this chromosome contained far fewer SCEs than expected on the basis of the amount of DNA in this region. A high frequency of SCE, however, was observed at the point junctions between the euchromatin and heterochromatin.  相似文献   

2.
SCEs were studied in the chromosomes of Allium cepa L. stained by the FPG technique at the second and third divisions after BrdU-substitution during only the first replication round or the three consecutive cycles, respectively. Cells were cultured in the dark and exposed to visible light at different moments throughout the three cycles. The results obtained show that visible light-illumination, which has no apparent effect upon native DNA, is able to increase the frequency of SCEs in BrdU-substituted chromosomes. The comparison of expected and observed figures clearly reveals that BrdU-substituted DNA is the target of visible light. Finally, the formation of visible light-induced SCEs in BrdU-substituted chromosomes appears to be an S-dependent process, even though a post-replicational mechanism closely associated with semi-conservative S phase replication might be responsible.Abbreviations SCE sister chromatid exchange - BrdU 5-bromodeoxyuridine - Thd thymidine - FdU 5-fluorodeoxyuridine - Urd uridine - FPG fluorescent plus Giemsa - UV ultraviolet - CHO Chinese hamster ovary  相似文献   

3.
The frequency of sister chromatid exchanges (SCEs) induced by mitomycin C (MMC) in Indian Muntjac chromosomes was determined by the fluorescence plus Giemsa (FPG) technique. Using scanning cytophotometry the relative DNA content of each chromosome was measured with and without acid or alkali pretreatments for C-banding. During acid and alkali treatments, euchromatin lost 20 to 30% of its DNA, while heterochromatin lost less than 5%; an intermediate DNA loss was observed for the short arm of the X chromosome. After growth of cells in the presence of MMC during the first cycle and in the presence of bromodeoxyuridine (BrdU) during the first and second cycles of DNA replication, SCEs in the euchromatin were proportional to DNA content. SCEs at the junctions between the neck of the X chromosome and the long and short arms occurred more frequently than expected. A threshold effect for the induction of SCEs was observed in regions resistant to DNA extraction by acid and alkali treatments (i.e., the neck and short arm of the X chromosome). At high concentrations of MMC, the frequency of SCE at each junction appears to plateau at 0.5.  相似文献   

4.
To test whether sister chromatid exchange (SCE) scores on human chromosomes have a uniform distribution, simulated SCE scores were generated and compared with observed scores using log-linear models. The analysis was performed at the level of the chromosome groups. Using this method we first tested whether the number of SCEs was distributed uniformly, i.e. proportional to the relative length of the chromosomes. Refinements of this hypothesis were made by considering a variable region around a first SCE to be inert for other SCEs and by making the occurrence of an SCE on a chromosome dependent on the occurrence of another SCE on the same chromosome. In further analyses it was tested whether the number of SCEs was proportional to the number of G bands on a chromosome, or to the DNA content of the chromosomes. None of the tested hypotheses fitted the observed data, establishing the non-uniform distribution of these events.  相似文献   

5.
The frequency of structural chromosomal rearrangements and sister-chromatid exchanges (SCEs) was investigated in short-term phytohemagglutininstimulated lymphocyte cultures by means of bromodeoxyuridine substitution and fluorescence plus Giemsa (FPG) staining technique. Both these parameters were significantly increased in patients treated with comparatively low doses of cyclophosphamide, busulphan and adriamycin. The increased SCE rate was proportional to the number of chromosome breaks, the ratio of SCE to breaks being about 100:1. The increase in the SCE number was maintained for several months after the termination of cytostatic therapy, when the conventional analysis of chromosome breaks yielded normal results. Normal SCE values were obtained in two patients treated with low doses of fluorouracil.  相似文献   

6.
C. Gutiérrez  A. Calvo 《Chromosoma》1981,83(5):685-695
In the present paper we have developed a new rationale and an experimental schedule to approximate the frequency of SCEs which occur independently of BrdU incorporation, namely, the baseline frequency of SCEs. The method used includes the analysis of SCE yields in second and third division chromosomes after BrdU-substitution for 1, 2, and/or 3 successive replication rounds in the presence of this thymidine analogue, leading to a set of ten different experimental results. As a result of formulating various mathematical equations and applying them to the data, an accurate estimation of the frequency of baseline (BrdU-independent) and BrdU-induced SCEs, can be made, thus avoiding the difficulties inherent in the current extrapolation methods. The conclusions are that 1) SCEs seem to be formed after DNA synthesis (by exchanging post-replicative DNA portions), but, obviously, very near to the replication fork and 2) that under our experimental conditions about 0.065 SCEs per picogram of DNA per cell cycle occur as a consequence of chromosome replication, this frequency being increased by BrdU-substitution. The methodology seems to be reliable enough to be used in other species and systems in order to compare baseline SCE frequencies.Abbreviations SCEs sister-chromatid exchanges - BrdU(BrdUrd) 5-bromodeoxyuridine - dTh(dThd) thymidine - 3H-dTh(3H-dThd) tritiated thymidine - FdU(FdUrd) 5-fluorodeoxyuridine - Urd uridine - FPG fluorescent plus Giemsa  相似文献   

7.
《Mutation Research Letters》1987,190(4):271-276
The C-band patterns, DNA late replication patterns and distribution patterns of spontaneous and γ-ray-induced SCEs in Crepis capillaris chromosomes were studied. The fluorescence plus Giemsa (FPG) technique was used for detection of SCEs and late-replicating chromosome regions after unifilar incorporation of BrdU into DNA. An asynchronous replication of both euchromatic and heterochromatic chromosome regions was established. The frequency of SCEs is increased about 2-fold by 1.5 Gy γ-rays. The localization of the sites of SCEs was analyzed with special reference to eu- and heterochromatin and early- and late-replicating regions. The data obtained showed that SCEs were distributed nonrandomly along the chromosomes. Preferential occurrence of SCEs was observed in the following chromosome regions: at the junction between eu- and heterochromatic regions, the latter being rich in late-replicating DNA; at the junction between early- and late-replicating regions, the latter not being C-band positive. Certain heterochromatic regions were more rarely involved in SCEs than expected on the basis of their length. The lowest incidence of SCEs was found in the centromeric regions. Very similar distribution patterns of spontaneous and γ-ray-induced SCEs were observed. The possible role of the differences in the time of replication of the different chromosome regions in the formation of SCEs is discussed.  相似文献   

8.
Germinated seeds ofVicia faba were continuously irradiated at low dose rate of gamma rays (0.05 Gy h-1) up to a total accumulated dose of 2 Gy. The FPG (fluorescence plus Giemsa) technique of differential chromatid staining was used to monitor the frequency of sister chromatid exchanges (SCEs) in irradiated root tip meristem cells. The results of the experiments have demonstrated that SCE frequency is raised by continuous gamma irradiation only in plant cells containing BrdU in the chromosomal DNA. No effect concerning SCE formation was recorded at continuous irradiation of meristematic cells of Vicia faba with native, i. e. BrdU-nonsubstituted, DNA. In contrast to SCEs, a significant increase was found in the yield of chromosomal aberrations in all variants of irradiation.  相似文献   

9.
Hideo Tsuji 《Genetics》1982,100(2):259-278
Sister chromatid exchanges (SCEs) under in vivo and in vitro conditions were examined in ganglion cells of third-instar larvae of Drosophila melanogaster (Oregon-R). In the in vivo experiment, third-instar larvae were fed on synthetic media containing 5-bromo-2'-deoxyuridine (BrdUrd). After two cell cycles, ganglia were dissected and treated with colchicine. In the in vitro experiment, the ganglia were also incubated in media containing BrdUrd for two cell cycles, and treated with colchicine. SCEs were scored in metaphase stained with Hoechst 33258 plus Giemsa. The frequencies of SCEs stayed constant in the range of 25-150 micrograms/ml and 0.25-2.5 micrograms/ml of BrdUrd in vivo and in vitro, respectively. SCEs gradually increased at higher concentrations, strongly suggesting that at least a fraction of the detected SCEs are spontaneous. The constant levels of SCE frequency were estimated, on the average, at 0.103 per cell per two cell cycles for females and 0.101 for males in vivo and at 0.096 for females and 0.091 for males in vitro. No difference was found in the SCE frequency between sexes at any of the BrdUrd concentrations. The analysis for the distribution of SCEs within chromosomes revealed an extraordinarily high proportion of the SCEs at the junctions between euchromatin and heterochromatin; the remaining SCEs were preferentially localized in the euchromatic regions of the chromosomes and in the heterochromatic Y chromosome. These results were largely inconsistent with those of Gatti et al. (1979).  相似文献   

10.
A stable staining procedure of sister-chromatid differentiation (SCD) using a monoclonal antibromodeoxyuridine (BrdU) antibody was newly established by combining it with the immunoperoxidase reaction (3,3'-diaminobenzidine, DAB reaction). This procedure permitted detection of SCD and SCE at very low BrdU concentrations. SCD was not usually observed below 2.0 micrograms/ml BrdU with flame-dried chromosome slides. When chromosome slides were prepared by air-drying over 37 degrees C warm water, SCD was detected at 10.0, 5.0, 1.0, 0.5, 0.3 and 0.2 micrograms/ml BrdU with FPG and even at 0.1 microgram/ml BrdU with the antibody technique. SCE levels were evaluated using the antibody technique and endomitotic analysis with FPG at low BrdU concentrations (1.0, 0.5, 0.3, 0.2 microgram/ml) in two BS B-lymphoblastoid cell lines (LCLs). Even though the BS SCE level was approximately 70 per cell at 10 micrograms/ml, the value decreased to the level of 20-30 SCE per cell at 0.1 microgram/ml with the antibody technique. In BrdU-labelled BS endomitoses, single SCEs highly decreased with BrdU concentrations (130-140 level at 10 micrograms/ml: 38-60 level at 0.2 microgram/ml), when compared to the rare twin SCE values (3-6 SCE level) at all BrdU concentrations. These findings conclusively indicate that the spontaneous baseline SCE in BS B-lymphoblastoid cells is low and most BS SCEs are caused by BrdU.  相似文献   

11.
The frequency of sister chromatid exchanges (SCEs) has been determined for C band and non-C band regions of chromosomes of the kangaroo rat after staining with the fluorescence plus giemsa (FPG) technique. After one complete round of DNA synthesis in the presence of bromodeoxyuridine (BrdU) staining of the C band regions revealed simple or complex asymmetries between chromatids. After two complete rounds of DNA synthesis in the presence of BrdU harlequin chromosomes were observed. Analysis of the distribution of SCE in chromosomes at their 1st and 2nd mitosis showed that relatively few exchanges occur within C band regions, although the frequency of SCEs is high at the junction between C band and non-C band chromosome regions.  相似文献   

12.
A commercially available bromodeoxyuridine (BrdUrd) antibody was used to demonstrate sister chromatid differentiation (SCD) and to evaluate sister chromatid exchanges (SCEs) in V79 Chinese hamster cells. V79 cells were cultivated for one cell cycle in the presence of BrdUrd, followed by a second cell cycle in the absence of BrdUrd. Chromosome preparations were stained by a common immunologic staining technique. The staining pattern observed is similar to that after FPG (fluorescent plus Giemsa) staining, though with reverse staining specificity. The sensitivity of BrdUrd detection is enhanced by a factor of 20 compared to the FPG technique and thus allows the evaluation of SCEs at very low BrdUrd concentrations. The application of the antibody technique gives information about the origin and localization of SCEs and produces further evidence for the spontaneous occurrence of SCEs.  相似文献   

13.
Studies of classical chromosome aberrations and sister-chromatid exchanges (SCES) suggest independent mechanisms for the two events despite some common features. Examination of chromosome breakage caused by X-rays, visible light, and viruses has shown that few chromatid breaks are accompanied by SCEs at the sites of breaks. No similar observations were available for chemically induced breaks, but it has been reported that rat chromosomes exposed to dimethylbenzanthracene (DMBA) contained a preponderance of both aberrations and SCEs in certain specific regions, implicating a common process in their formation. These conclusions were drawn from a comparison of breaks induced in vivo with SCEs induced in vitro. However, we used 7 chemical mutagens to induce both chromatid breaks and SCEs in "harlequin" chromosomes of cultured rat and Chinese hamster ovary (CHO) cells and found that 25% of the 914 breaks scored were associated with SCEs. The proportion of breaks accompanied by SCEs is related to the overall SCE frequency and falls into the range predicted on the basis that breaks and SCEs occur independently. The reported association between sites for SCEs and aberrations also reflects secondary factors, such as induction of SCEs and aberrations during DNA synthesis in late replicating regions of the chromosomes.  相似文献   

14.
Several studies have been carried out to evaluate the mutagenic and carcinogenic potential of atrazine, the most prevalent of triazine herbicides classified as a "possible human carcinogen". The majority of these studies have been negative but positive responses have been also reported including mammary tumors in female Sprague-Dawley rats. Sister chromatid exchanges (SCEs) caused by the presence of DNA lesions at the moment of DNA replication have been extensively used for genotoxicity testing, but for non-cytotoxic exposures to atrazine controversial results have been reported. Even though exposures to higher concentrations of atrazine could provide clear evidence for its genotoxicity, conventional SCE analysis at metaphase cells cannot be used because affected cells are delayed in G2-phase and do not proceed to mitosis. As a result, the genotoxic potential of atrazine may have been underestimated. Since clear evidence has been recently reported relating SCEs to homologous recombinational events, we are testing here the hypothesis that high concentrations of atrazine will cause a dose-dependent increase in homologous recombinational events as quantified by the frequency of SCEs analyzed in G2-phase. Towards this goal, a new cytogenetic approach is applied for the analysis of SCEs directly in G2-phase prematurely condensed chromosomes (PCCs). The methodology enables the visualization of SCEs in G2-blocked cells and is based on drug-induced PCCs in cultured lymphocytes. The results obtained for high concentrations of atrazine do not demonstrate a dose-dependent increase in homologous recombinational events. They do not support, therefore, a genotoxic mode of action. However, they suggest that an important part in the variation of SCE frequency reported by different laboratories when conventional SCE analysis is applied after exposure to a certain concentration of atrazine, is due to differences in cell cycle kinetics of cultured lymphocytes, rather than to a true biological variation in the cytogenetic end point used.  相似文献   

15.
In the present paper we have used a rationale based on the development of theoretical equations that define sister-chromatid exchange (SCE) frequencies as a function of two variables, namely the baseline (BrdU-independent) and the BrdU-dependent SCE frequencies. The experimental design includes the estimation of SCE frequencies in second division chromosomes when both cycles occurred in the presence of BrdU and when BrdU incubation took place only during the first cycle in a wide range of BrdU concentrations. The final SCE yields in second division chromosomes could be separated into three different components: (1) The BrdU-independent, ‘spontaneous’ or baseline SCEs, whose low but biologically significant frequency was calculated to be about 0.06 SCEs per pg of DNA; this figure could be similar for most of the cell types; (2) the BrdU-dependent SCEs whose frequency increases with BrdU dose, probably as a result of BrdU substitution for thymidine; (3) the BrdU-dependent SCEs as a consequence of other cellular factors such as disturbance of nucleotide pool sizes. At high BrdU concentrations (300 μM upward) the three components appear to have a significant value in the final SCE yield, whereas at lower BrdU doses the third component seems to be negligible.  相似文献   

16.
Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2'-deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment-strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.  相似文献   

17.
Chromosome banding techniques for morphologically classified cells   总被引:1,自引:0,他引:1  
This report describes staining techniques for chromosome banding and sister chromatid exchanges (SCEs) suited to a method that allows simultaneous analysis of cell morphology and karyotype. Mitotic cells are first identified by either cytochemical staining or immunologic methods. The preparations are then destained and treated with acid fixative. For G- and C-banding, the cells are incubated overnight at room temperature in S?orensen buffer and then stained with Giemsa. To demonstrate SCEs, the cells are fluorescent stained before being stained with Giemsa.  相似文献   

18.
Summary A mean frequency of 20.6 sister chromatid exchanges (SCEs) per cell has been observed in a reconstructed karyotype of Hordeum vulgare by application of the FPG technique after unifilar incorporation of BrdU into chromosomes. The involvement in SCEs of the 48 segments into which the chromosome set had been subdivided was, with a single deviation, length proportional and independent of the segment's heterochromatin content. Asymmetric bands, indicative of an uneven distribution of adenine and thymidine between the DNA strands in adenine (A)-thymidine (T) rich chromosome regions, could not be detected after incubation of the cells in BrdU for one cycle of DNA replication.  相似文献   

19.
Mammalian genome replication and maintenance are intimately coupled with the mechanisms that ensure cohesion between the resultant sister chromatids and the repair of DNA breaks. Although a sister chromatid exchange (SCE) is an error-free swapping of precisely matched and identical DNA strands, repetitive elements adjacent to the break site can act as alternative template sites and an unequal sister chromatid exchange can result, leading to structural variations and copy number change. Here we test the vulnerability for SCEs of the repeat-rich bovine Y chromosome in comparison with X, 16 and 26 chromosomes, using chromosome orientation-fluorescence in situ hybridization. The mean SCE rate of the Y chromosome (0.065 ± 0.029) was similar to that of BTA16 and BTA26 (0.065, 0.055), but was only approximately half of that of the X chromosome (0.142). As the chromosomal length affects the number of SCE events, we adjusted the SCE rates of the Y, 16, and 26 chromosomes to the length of the largest chromosome X resulting in very similar adjusted SCE (SCE(adj)) rates in all categories. Our results - based on 3 independent bulls - show that, although the cattle Y chromosome is a chest full of repeated elements, their presence and the documented activity of repeats in SCE formation does not manifest in significantly higher SCE(adj) rates and suggest the importance of the structural organization of the Y chromosome and the role of alternative mitotic DNA repair mechanisms.  相似文献   

20.
Four human female fibroblast strains with an i(Xq) or derivative X chromosome as a cytological marker for the inactive X chromosome were used to determine the frequency of sister chromatid exchanges (SCEs) in the active and inactive X chromosomes. No significant difference in SCE frequency between the active and inactive X chromosomes was observed. Therefore, the state of chromatin condensation and the late DNA replication in the facultative heterochromatin of the inactive X chromosome do not appear to influence the SCE frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号