首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reliability of three devices used for measuring vertical jump height   总被引:1,自引:0,他引:1  
The purpose of this investigation was to assess the intrasession and intersession reliability of the Vertec, Just Jump System, and Myotest for measuring countermovement vertical jump (CMJ) height. Forty male and 39 female university students completed 3 maximal-effort CMJs during 2 testing sessions, which were separated by 24-48 hours. The height of the CMJ was measured from all 3 devices simultaneously. Systematic error, relative reliability, absolute reliability, and heteroscedasticity were assessed for each device. Systematic error across the 3 CMJ trials was observed within both sessions for males and females, and this was most frequently observed when the CMJ height was measured by the Vertec. No systematic error was discovered across the 2 testing sessions when the maximum CMJ heights from the 2 sessions were compared. In males, the Myotest demonstrated the best intrasession reliability (intraclass correlation coefficient [ICC] = 0.95; SEM = 1.5 cm; coefficient of variation [CV] = 3.3%) and intersession reliability (ICC = 0.88; SEM = 2.4 cm; CV = 5.3%; limits of agreement = -0.08 ± 4.06 cm). Similarly, in females, the Myotest demonstrated the best intrasession reliability (ICC = 0.91; SEM = 1.4 cm; CV = 4.5%) and intersession reliability (ICC = 0.92; SEM = 1.3 cm; CV = 4.1%; limits of agreement = 0.33 ± 3.53 cm). Additional analysis revealed that heteroscedasticity was present in the CMJ when measured from all 3 devices, indicating that better jumpers demonstrate greater fluctuations in CMJ scores across testing sessions. To attain reliable CMJ height measurements, practitioners are encouraged to familiarize athletes with the CMJ technique and then allow the athletes to complete numerous repetitions until performance plateaus, particularly if the Vertec is being used.  相似文献   

2.
INTRODUCTION: The repeatability of subjective and objective assessments of neck muscle fatigue is very important with regard to the clinical applicability of these methods. METHOD: To establish between-days reliability, 33 healthy volunteers performed a 60% maximum voluntary isometric contraction test from a standing position in all neck movements. Cervical muscle fatigue was assessed on three separate occasions from the spectral (median frequency, MF) and amplitude (root mean square, RMS) analysis of the electromyogram (EMG) signal recorded from the cervical paraspinal group, splenius capitis, levator scapulae and sternocleidomastoid. Subjective assessment of fatigue was rated by employing the Borg scale. Intraclass correlation coefficient ICC((1,1)), standard error of measurement (SEM), smallest detectable difference (SDD) indices and Pearson's correlation co-efficient were calculated for the analysis of the results. RESULTS: Normalised median frequency (MF) slope had low repeatability and large between-day error (ICC((1,1))=0.28-0.61; SEM=0.33-0.60%/s; SDD=132.7-703.2%) for the protagonist muscles of each movement. Initial median frequency (IMF) had moderate to good reliability and small error (ICC((1,1))=0.64-0.81; SEM=2.8-8.8Hz; SDD=19.9-38.5%). The RMS slope yielded also poor repeatability. The Borg assessment was more reliable than the EMG estimate though variability between sessions was still quite high (SDD=29.2-136.5%). No correlation was found between the EMG and Borg assessment of neck muscle fatigue (r=-0.01-0.39). CONCLUSION: The protocol used for assessing neck muscle fatigue proved to be reliable only for the IMF but the clinical usefulness of this measure remains questionable. The lack of correlation between objective and subjective estimation of neck muscle fatigue was possibly a consequence of the poor measurement repeatability. Further research is needed to identify the factors responsible for these results on neck area.  相似文献   

3.
The purpose of the present study was to develop a systematic procedure for the establishment of 1 repetition maximum (1RM) in order to describe an easily accessible test procedure that is applicable for physical therapists and athletic trainers who manage strength training for healthy individuals and patients. Another purpose was to investigate the intra- and interrater reliability of 1RM of squat on 1 leg and seated knee extension on 1 leg. Estimates of leg strength and ratings of perceived exertion formed the basis of the amount of load selected. The reliability of the procedure was assessed by a test-retest design. One RM was established for 16 and 27 healthy individuals, for squat and knee extension, respectively. The intrarater reliability of 1RM of squat on 1 leg was questionable (intraclass correlation [ICC] 0.64, measurement error 13.1 kg). The interrater reliability of 1RM of squat on 1 leg was clinically acceptable (ICC 0.94, measurement error 5.2 kg). The intrarater and interrater reliability of 1RM of seated knee extension on 1 leg was clinically acceptable (ICC 0.90, measurement error 5.1 kg and ICC 0.96, measurement error 3.2 kg, respectively). In conclusion, both exercises can be used to determine the load in exercise programs. In addition, seated knee extension may be used to evaluate strength. In contrast, squat on 1 leg is more uncertain to use at assessments between different days, which may be due to the complexity of this exercise. The test, performed in the described manner, is suitable for physical therapists, athletic trainers, and strength and conditioning coaches in clinical practice working with strength training and rehabilitation.  相似文献   

4.
This study evaluated between-session reliability of opto-electronic motion capture to measure trunk posture and three-dimensional ranges of motion (ROM). Nineteen healthy participants aged 24–74 years underwent spine curvature, pelvic tilt and trunk ROM measurements on two separate occasions. Rigid four-marker clusters were attached to the skin overlying seven spinous processes, plus single markers on pelvis landmarks. Rigid body rotations of spine marker clusters were calculated to determine neutral posture and ROM in flexion, extension, total lateral bending (left-right) and total axial rotation (left-right). Segmental spine ROM values were in line with previous reports using opto-electronic motion capture. Intraclass correlation coefficients (ICC) and standard error of measurement (SEM) were calculated as measures of between-session reliability and measurement error, respectively. Retroreflective markers showed fair to excellent between-session reliability to measure thoracic kyphosis, lumbar lordosis, and pelvic tilt (ICC = 0.82, 0.63, and 0.54, respectively). Thoracic and lumbar segments showed highest reliabilities in total axial rotation (ICC = 0.78) and flexion-extension (ICC = 0.77–0.79) ROM, respectively. Pelvic segment showed highest ICC values in flexion (ICC = 0.78) and total axial rotation (ICC = 0.81) trials. Furthermore, it was estimated that four or fewer repeated trials would provide good reliability for key ROM outcomes, including lumbar flexion, thoracic and lumbar lateral bending, and thoracic axial rotation. This demonstration of reliability is a necessary precursor to quantifying spine kinematics in clinical studies, including assessing changes due to clinical treatment or disease progression.  相似文献   

5.
The purpose of this study was to assess different measurement strategies to increase the reliability of different electromyographic (EMG) indices developed for the assessment of back muscle impairments. Forty male volunteers (20 controls and 20 chronic low back pain patients) were assessed on three sessions at least 2 days apart within 2 weeks. Surface EMG signals were recorded from four pairs (bilaterally) of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10) while the subjects performed, in a static dynamometer, two static trunk extension tasks at 75% of the maximal voluntary contraction separated by a 60 s rest period: (1) a 30 s fatigue task and (2) a 5 s recovery task. Different EMG indices (based on individual muscles or averaged across bilateral homologous muscles or across all muscles) were computed to evaluate muscular fatigue and recovery. Intra-class correlation coefficient (ICC) and standard error of measurement (SEM) in percentage of the grand mean were calculated for each EMG variable. Reliable EMG indices are achieved for both healthy and chronic low back pain subjects when (1) electrodes are positioned on medial back muscles (multifidus at the L5 level and longissimus at L1) and (2) measures are averaged across bilateral muscles and/or across two fatigue tests performed within a session. The most reliable EMG indices were the bilateral average of medial back muscles (ICC range: 0.68-0.91; SEM range: 5-35%) and the average of all back muscles (ICC range: 0.77-0.91; SEM range: 5-30%). The averaging of measures across two fatigue tests is predicted to increase the reliability by about 13%. With regards to EMG indices of fatigue, the identification of the most fatigable muscle also lead to satisfactory results (ICC range: 0.74-0.79; SEM range: 21-26%). The assessment of back muscle impairments through EMG analysis necessitates the use of multiple electrodes to achieve reliable results.  相似文献   

6.

Background

Peak oxygen uptake (VO2peak) via cardiopulmonary exercise testing is considered the gold standard for testing aerobic capacity in healthy participants and people with various medical conditions. The reliability and responsiveness of cardiopulmonary exercise testing outcomes in persons with MS (PwMS) have not been extensively studied.

Objective

(1) to investigate the reliability of cardiopulmonary exercise parameters in PwMS; (2) to determine the responsiveness, in terms of the smallest detectable change (SDC), for each parameter.

Design

Two repeated measurements of cardiopulmonary exercise outcomes were obtained, with a median time interval of 16 days.

Methods

Thirty-two PwMS suffering from subjective fatigue performed cardiopulmonary exercise tests on a cycle ergometer, to voluntary exhaustion. We calculated the reliability, in terms of the intra-class correlation coefficient (ICC [2,k]; absolute agreement), and the measurement error, in terms of standard error of measurement (SEM) and SDC at individual (SDCindividual) and group level (SDCgroup).

Results

The ICC for VO2peak was 0.951, with an SEM of 0.131 L∙min−1 and an SDCindividual of 0.364 L∙min−1. When corrected for bodyweight, the ICC of VO2peak was 0.933, with an SEM of 1.7 mL∙kg−1∙min−1 and in an SDCindividual of 4.6 mL∙kg−1∙min−1.

Limitations

Generalization of our study results is restricted to fatigued PwMS with a low to mild level of disability.

Conclusions

At individual level, cardiopulmonary exercise testing can be used reliably to assess physical fitness in terms of VO2peak, but less so to determine significant changes. At group level, VO2peak can be reliably used to determine physical fitness status and establish change over time.  相似文献   

7.
Previous studies evaluated 3D human jaw movements using kinematic analysis systems during mouth opening, but information on the reliability of such measurements is still scarce. The purpose of this study was to analyze within- and between-session reliabilities, inter-rater reliability, standard error of measurement (SEM), minimum detectable change (MDC) and consistency of agreement across raters and sessions of 3D kinematic variables during maximum mouth opening (MMO). Thirty-six asymptomatic subjects from both genders were evaluated on two different days, five to seven days apart. Subjects performed three MMO movements while kinematic data were collected. Intraclass correlation coefficient (ICC), SEM and MDC were calculated for all variables, and Bland-Altman plots were constructed. Jaw radius and width were the most reproducible variables (ICC > 0.81) and demonstrated minor error. Incisor displacement during MMO and angular movements in the sagittal plane presented good reliability (ICC from 0.61 to 0.8) and small errors and, consequently, could be used in future studies with the same methodology and population. The variables with smaller amplitudes (condylar translations during mouth opening and closing and mandibular movements on the frontal and transversal planes) were less reliable (ICC < 0.61) and presented larger SEM and MDC. Although ICC, SEM and MDC showed less between-session reproducibility than within-session and inter-rater, the limits of agreement were larger in inter-rater comparisons. In future studies care must be taken with variables collected on different days and with mandibular movements in the frontal and transversal planes.  相似文献   

8.
Surface electromyography (EMG) is widely used to evaluate forearm muscle function and predict hand grip forces; however, there is a lack of literature on its intra-session and inter-day reliability. The aim of this study was to determine reliability of surface EMG of finger and wrist flexor muscles across varying grip forces. Surface EMG was measured from six forearm flexor muscles of 23 healthy adults. Eleven of these subjects undertook inter-day test–retest. Six repetitions of five randomized isometric grip forces between 0% and 80% of maximum force (MVC) were recorded and normalized to MVC. Intra- and inter-day reliability were calculated through the intraclass correlation coefficient (ICC) and standard error of measurement (SEM).Normalized EMG produced excellent intra-session ICC of 0.90 when repeated measurements were averaged. Intra-session SEM was low at low grip forces, however, corresponding normalized SEM was high (23–45%) due to the small magnitude of EMG signals. This may limit the ability to evaluate finer forearm muscle function and hand grip forces in daily tasks. Combining EMG of functionally related muscles improved intra-session SEM, improving within-subject reliability without taking multiple measurements. Removing and replacing electrodes inter-day produced poor ICC (ICC < 0.50) but did not substantially affect SEM.  相似文献   

9.
Appropriate reliability is a necessary condition for the use of surface EMG for evaluation of hamstring muscle function in cases of knee joint pathologies or ligament injuries. The aim of the study was to investigate the test-retest reliability of power spectrum and amplitude of surface electromyographic (EMG) measurements of semitendinosus (ST) and biceps femoris (BF) during ramp isometric contractions. Eleven males performed maximum isometric contractions (MVC) of the knee flexors in two sessions, a week apart with simultaneous recording of surface EMG of the BF and ST. Intra class correlation (ICC) and standard error measurements (SEM) were applied to assess test-retest reliability of the averaged EMG (aEMG) and the median frequency (MF) over 10 levels of force, from 0% to 100% of the maximum. The ICC values ranged from 0.38 to 0.96 for the aEMG with SEM values reaching 11.37% of MVC. For the MF, the ICCs ranged from 0.44 to 0.98 (SEM range 4.49–18.19 Hz). In our set up, ramp contractions can be used to examine hamstring EMG patterns with acceptable reliability.  相似文献   

10.
Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the 1-repetition maximum (1RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 years, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had >1 year of training experience in weightlifting exercises performed a 1RM power clean on 2 nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for 1 repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC[2,k]), Pearson correlation coefficient (r), repeated measures analysis of variance, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% confidence interval = 0.96-0.99). Testing also demonstrated a strong relationship between 1RM measures in trials 1 and 2 (r = 0.98, p < 0.0001) with no significant difference in power clean performance between trials (70.6 ± 19.8 vs. 69.8 ± 19.8 kg). Bland-Altman plots confirmed no systematic shift in 1RM between trials 1 and 2. The typical error to be expected between 1RM power clean trials is 2.9 kg, and a change of at least 8.0 kg is indicated to determine a real change in lifting performance between tests in young lifters. No injuries occurred during the study period, and the testing protocol was well tolerated by all the subjects. These findings indicate that 1RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified instruction is present.  相似文献   

11.
Changes in electromyographic (EMG) parameters are used to evaluate timing, amplitude, and fatigue of muscle actions during movement. Little published data describe the reliability and precision of multiple EMG parameters, how these parameters compare to one another, and how these parameters vary between muscles. The purpose of this study was to determine the reliability and precision of four EMG parameters recorded from the legs, torso, and arm muscles during running. Fifteen well-trained male runners performed moderate-intensity treadmill running while EMG data were collected from thirteen muscles. Integrated EMG (iEMG), root mean square EMG (RMS), maximum M-wave, and median power frequency (MPF) were calculated for 25 consecutive strides. Intra-class correlation coefficients (ICC) and standard error of measurement (SEM) for each parameter were calculated for each muscle. Seven muscles displayed good reliability (ICC > 0.80) for all parameters studied. MPF was the most reliable variable, with 12 muscles having ICC > 0.80 and <6% normalized SEM. Reliability and precision differed between muscles of similar function and anatomic region. These data emphasize the need for researchers and clinicians to have reliability and precision measures for all parameters of each muscle, and demonstrates that generalizations must be used cautiously when interpreting EMG data collected during running.  相似文献   

12.
Shoukri MM  Asyali MH  Walter SD 《Biometrics》2003,59(4):1107-1112
Reliability of continuous and dichotomous responses is usually assessed by means of the intraclass correlation coefficient (ICC). We derive the optimal allocation of the number of subjects k and the number of repeated measurements n that minimize the variance of the estimated ICC. Cost constraints are discussed for the case of normally distributed responses. Tables showing optimal choices of k and n are given, along with guidelines for the design of reliability studies in light of our results and those reported by others.  相似文献   

13.
This study assessed the mechanical reliability and validity of the INRTEK iSAM 9000 isokinetic dynamometer, and compared the obtained torque values of the prototype device with those from a traditional device. Sixty volunteers (40 men and 20 women) were tested at 60 degrees per second for shoulder, knee, and trunk flexion, and extension on both the Cybex 6000 and a new isokinetic dynamometer (iSAM 9000). Intraclass correlation coefficients (ICC) and standard errors of measurement (SEM) revealed a high level of reproducibility and precision in the device's torque measurements (ICC range = 0.94-0.98; SEM range = 5.2-29.7). Pearson r values revealed very high relationships between the two instruments (set 1: r = 0.84-0.93; set 2: r = 0.87-0.93; P < 0.05). Significantly higher peak torque for both sets of left and right knee flexion and extension, right shoulder extension and trunk extension was found for the iSAM 9000 compared to the Cybex 6000 (P < 0.05). The strong ICCs and small SEMs support the device's mechanical reliability and validity. The high correlation coefficients between the prototype dynamometer and the Cybex 6000 support the new device's validity in the measurement of isokinetic torque. The findings of this study will be used to refine the next generation of the INRTEK isokinetic device with respect to test protocols and the reliability of measuring human muscle performance.  相似文献   

14.
The purpose of this study was to establish and cross-validate a method for analyzing gait patterns determined by the center of mass (COM) through inertial sensors embedded in smart devices. The method employed an extended Kalman filter in conjunction with a quaternion rotation matrix approach to transform accelerations from the object onto the global frame. Derived by double integration, peak-to-trough changes in vertical COM position captured by a motion capture system, inertial measurement unit, and smart device were compared in terms of averaged and individual steps. The inter-rater reliability and levels of agreement for systems were discerned through intraclass correlation coefficients (ICC) and Bland–Altman plots. ICCs corresponding to inter-rater reliability were good-to-excellent for position data (ICCs,.80–.95) and acceleration data (ICCs,.54–.81). Levels of agreements were moderate for position data (LOA, 3.1–19.3%) and poor for acceleration data (LOA, 6.8%–17.8%). The Bland–Altman plots, however, revealed a small systematic error, in which peak-to-trough changes in vertical COM position were underestimated by 2.2 mm; the Kalman filter?s accuracy requires further investigation to minimize this oversight. More importantly, however, the study?s preliminary results indicate that the smart device allows for reliable COM measurements, opening up a cost-effective, user-friendly, and popular solution for remotely monitoring movement. The long-term impact of the smart device method on patient rehabilitation and therapy cannot be underestimated: not only could healthcare expenditures be curbed (smart devices being more affordable than today‘s motion sensors), but a more refined grasp of individual functioning, activity, and participation within everyday life could be attained.  相似文献   

15.
The purpose of this study was to examine the reliability of normalisation methods used in the study of the posterior and posterolateral neck muscles in a group of healthy controls. Six asymptomatic male subjects performed a total of 12 maximum voluntary isometric contractions (MVIC) and 60%-submaximal isometric contractions (60%-MVIC) against the torque arm of an isokinetic dynamometer whilst surface and intramuscular electromyography (EMG) was recorded unilaterally from representative posterior and posterolateral locations. Reliability was calculated using intra-class correlation coefficient (ICC), relative standard error of measurement (%SEM) and relative coefficient of variation (%CV). Maximal torque output was found to be highly reliable in the directions of extension and right lateral bending when the first of three MVIC contractions was excluded. When averaged across contraction direction, high reliability was found for both surface (MVIC: ICC=0.986, %SEM=7.5, %CV=9.2; 60%-MVIC: ICC=0.975, %SEM=10, %CV=13.7) and intramuscular (MVIC: ICC=0.910, %SEM=20, %CV=19.1; 60%-MVIC: ICC=0.952, %SEM=16.5, %CV=13.5) electrodes. Intramuscular electrodes displayed the least reliability in right lateral bending. The use of visual feedback markedly increased the reliability of 60%-MVIC contractions.  相似文献   

16.
PurposeThis study aimed to quantify the extent to which age was associated with joint position sense (JPS) of the asymptomatic shoulder as measured by joint position reproduction (JPR) tasks and assess the reproducibility of these tasks.Methods120 Asymptomatic participants aged 18–70 years each performed 10 JPR-tasks. Both contralateral and ipsilateral JPR-tasks were evaluated on accuracy of JPR under active- and passive conditions at two levels within the shoulder forward flexion trajectory. Each task was performed three times. In a subgroup of 40 participants, the reproducibility of JPR-tasks was assessed one week after initial measurement. Reproducibility of JPR-tasks was evaluated by both reliability (intra-class correlation coefficients (ICC’s)) and agreement (standard error of measurement (SEM)) measures.ResultsAge was not associated with increased JPR-errors for any of the contralateral or ipsilateral JPR-tasks. ICC’s ranged between 0.63 and 0.80 for contralateral JPR-tasks, and from 0.32 to 0.48 for ipsilateral tasks, except for one ipsilateral task where the reliability was similar to contralateral tasks (0.79). The SEM was comparable and small for all JPR-tasks, ranging between 1.1 and 2.1.ConclusionNo age-related decline in JPS of the asymptomatic shoulder was found, and good agreement between test and re-test measurements for all JPR-tasks as indicated by the small SEM.  相似文献   

17.
Despite a vast literature on one-leg hops and cutting maneuvers assessing knee control pre/post-injury of the anterior cruciate ligament (ACL), comprehensive and reliable tests performed under unpredictable conditions are lacking. This study aimed to: (1) assess the feasibility of an innovative, knee-challenging, one-leg double-hop test consisting of a forward hop followed by a diagonal hop (45°) performed medially (UMDH) or laterally (ULDH) in an unanticipated manner; and (2) determine within- and between-session reliability for 3-dimensional hip and knee kinematics and kinetics of these tests. Twenty-two healthy women (22.3 ± 3.3 years) performed three successful UMDH and ULDH, twice 1–4 weeks apart. Hop success rate was 69–84%. Peak hip and knee angles demonstrated moderate to excellent within-session reliability (intraclass correlation coefficient [ICC] 95% confidence interval [CI]: 0.67–0.99, standard error of measurement [SEM] ≤  3°) and poor to excellent between-session reliability (ICC CI: 0.22–0.94, SEM ≤ 3°) for UMDH and ULDH. The smallest real difference (SRD) was low (≤ 5°) for nearly all peak angles. Peak hip and knee moments demonstrated poor to excellent reliability (ICC CI: 0–0.97) and, in general, moments were more reliable within-session (SEM ≤ 0.14 N.m/kg.m, both directions) than between-session (SRD ≤ 0.43 N.m/kg.m). Our novel test was feasible and, in most but not all cases, provided reliable angle estimates (within-session > between-session, both directions) albeit less reliable moments (within-session > between-session, both directions). The relatively large hip and knee movements in the frontal and transverse planes during the unanticipated hops suggest substantial challenge of dynamic knee control. Thus, the test seems appropriate for evaluating knee function during ACL injury rehabilitation.  相似文献   

18.
The height of the medial longitudinal arch (MLA) is thought to be a predisposing factor to various lower extremity injuries. Discrepancy exists as to whether MLA height plays a role in injury prevention. The purpose of this study was to determine the intertester and intratester reliability, and the validity of the mirrored foot photo box (MFPB) and caliper measurements to radiographic measurements. METHODS: Thirty subjects with equal numbers of men and women were recruited. Both feet were tested (n=60) in a 90% weight bearing stance. A set of anatomic landmarks were palpated, marked, and measured using a caliper, MFPB, and radiographs. The protocol was completed by two testers on 2 days approximately 1 week apart. Intertester and intratester reliability were determined using the intraclass correlation coefficient (ICC)(2,k) and the ICC(2,1), respectively. Validity of both measurement techniques to radiographic measurements was determined using the ICC(2,k). RESULTS: The intertester reliability ranged from 0.991 to 0.577, while the intratester reliability ranged from 0.994 to 0.527, with first metatarsal angle being the only variable with poor reliability. Most variables demonstrated acceptable validity between the MFPB and the caliper measurements, and acceptable validity between the MFPB and calipers compared to radiographic measurements. The MFPB took 51.3+/-19.6s per foot while the caliper measurements averaged 227.4+/-68.9s to complete the measurements. DISCUSSION: The MFPB is as reliable as the caliper measurements, and offers better intertester reliability. Both the caliper and MFPB measurements demonstrated acceptable validity to radiographic measurements and testing time was reduced when using the MFPB compared to calipers.  相似文献   

19.
The purpose of this study was to examine the real-time intersession and interrater reliability of the functional movement screen (FMS). The overall study consisted of 19 volunteer civilians (12 male, 7 female). The intersession reliability consisted of 12 men and 7 women, whereas 10 men and 6 women participated in the interrater reliability test session. Two raters (A and B) were involved in the interrater reliability aspect of this study. The FMS includes 7 tests: deep squat (DS), hurdle step (HS), in-line lunge (IL), shoulder mobility (SM), active straight leg raise (ASLR), trunk stability push-up (TSPU), and rotary stability (RS). Researchers analyzed the data via intraclass correlation (ICC). To determine the reliability of the intersession scoring of the FMS and the intrasession interrater scoring of the FMS a 2-way mixed effects model intraclass correlation coefficient (ICC(3,1)) was used for the continuous data, whereas a weighted Cohen's kappa (κ) was used for the categorical data. The dependent variables were FMS total score (0-21 scale) and associated tests were DS, HS, IL, SM, ASLR, TSPU, and RS. Intersession reliability (ICC, SEM) and κ were as follows: FMS total score (0.92, 0.51), DS (κ = 0.69), HS (κ = 0.16), IL (κ = 0.69), SM (κ = 0.84), ASLR (κ = 0.69), TSPU (κ = 0.77), and RS (no covariance). Interrater reliability (ICC, SEM) and κ were as follows: FMS total score (0.98, 0.25), DS (κ = 1.0), HS (κ = 0.33), IL (κ = 0.88), SM (κ = 0.90), ASLR (κ = 0.88), TSPU (κ = 0.75), and RS (no covariance). The FMS total scores displayed high intersession and interrater reliabilities. Finally, with the exception of HS, all tasks displayed moderate to high intersession reliability and good to high interrater reliability.  相似文献   

20.

Objective

To assess the reliability of contractile properties of the knee extensor muscles in 23 individuals with post-polio syndrome (PPS) and 18 age-matched healthy individuals.

Methods

Contractile properties of the knee extensors were assessed from repeated electrically evoked contractions on 2 separate days, with the use of a fixed dynamometer. Reliability was determined for fatigue resistance, rate of torque development (MRTD), and early and late relaxation time (RT50 and RT25), using the intraclass correlation coefficient (ICC) and standard error of measurement (SEM, expressed as % of the mean).

Results

In both groups, reliability for fatigue resistance was good, with high ICCs (>0.90) and small SEM values (PPS: 7.1%, healthy individuals: 7.0%). Reliability for contractile speed indices varied, with the best values found for RT50 (ICCs>0.82, SEM values <2.8%). We found no systematic differences between test and retest occasions, except for RT50 in healthy subjects (p = 0.016).

Conclusions

In PPS and healthy individuals, the reliability of fatigue resistance, as obtained from electrically evoked contractions is high. The reliability of contractile speed is only moderate, except for RT50 in PPS, demonstrating high reliability.

Significance

This was the first study to examine the reliability of electrically evoked contractile properties in individuals with PPS. Our results demonstrate its potential to study mechanisms underlying muscle fatigue in PPS and to evaluate changes in contractile properties over time in response to interventions or from natural course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号