首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glossina austeni oogenesis throughout its nine-day pregnancy cycle is described with the focus on previtellogenic stages. The ultrastructural details of the oocyte-nurse cell relationship and cyst formation is presented. The oocyte develops in a syncytial association with 15 nurse cells with the entire unit surrounded by a follicular epithelium. The nurse cells have large elaborate nucleoli. Evidence of nuclear emissions and the presence of an unusual cytoplasmic membrane association were found. A variety of nuclear inclusions are seen in the oocyte. Glycogen, lipid, ribosomes and membrane organelles accumulate in the oocyte during previtellogenesis.  相似文献   

2.
We have used in situ hybridization to ovarian tissue sections to study the pattern of histone gene expression during oogenesis in Drosophila melanogaster. Our studies suggest that there are two distinct phases of histone gene expression during oogenesis. In the first phase, which occurs during early to middle oogenesis (stages 5-10A), we observe a mosaic pattern of histone mRNA in the 15 nurse cells of the egg chamber: some cells have very high levels of mRNA, while others have little or no mRNA. Our analysis suggests that there is a cyclic accumulation and subsequent degradation of histone mRNA in the egg chamber and that very little histone mRNA is transported into the growing oocyte. Moreover, since the endomitotic replication cycles of the nurse cells are asynchronous during this period, the mosaic distribution of histone message would suggest that the expression of the histone genes in each nurse cell nucleus is probably coupled to DNA replication as in most somatic cells. The second phase begins at stage 10B. During this period, histone gene expression appears to be "induced" in all 15 nurse cells of the egg chamber, and instead of a mosaic pattern, high levels of histone mRNA are found in all cells. Unlike the earlier phase, this expression is apparently uncoupled from the endomitotic replication of the nurse cells (which are completed by the end of stage 10A). Moreover, much of the newly synthesized histone mRNA is transported from the nurse cells into the oocyte where it accumulates and is stored for use during early embryogenesis. Finally, we have also observed tightly clustered grains within nurse cell nuclei in non-denatured tissue sections. As was the case with cytoplasmic histone mRNA, there is a mosaic distribution of nuclear grains from stages 5 to 10A, while at stage 10B, virtually all nurse cell nuclei have grain clusters. These grain clusters appear to be due to the hybridization of nurse cell histone gene DNA to our probe, and are localized in specific regions of the nucleus.  相似文献   

3.
The Nopp140 gene of Drosophila maps within 79A5 of chromosome 3. Alternative splicing yields two variants. DmNopp140 (654 residues) is the sequence homolog of vertebrate Nopp140. Its carboxy terminus is 64% identical to that of the prototypical rat Nopp140. DmNopp140-RGG (688 residues) is identical to DmNopp140 throughout its first 551 residues, but its carboxy terminus contains a glycine/arginine-rich domain that is often found in RNA-binding proteins such as vertebrate nucleolin. Both Drosophila variants localize to nucleoli in Drosophila Schneider II cells and Xenopus oocytes, specifically within the dense fibrillar components. In HeLa cells, DmNopp140-RGG localizes to intact nucleoli, whereas DmNopp140 partitions HeLa nucleoli into phase-light and phase-dark regions. The phase-light regions contain DmNopp140 and endogenous fibrillarin, whereas the phase-dark regions contain endogenous nucleolin. When coexpressed, both Drosophila variants colocalize to HeLa cell nucleoli. Both variants fail to localize to endogenous Cajal bodies in Xenopus oocyte nuclei and in HeLa cell nuclei. Endogenous HeLa coilin, however, accumulates around the periphery of phase-light regions in cells expressing DmNopp140. The carboxy truncation (DmNopp140DeltaRGG) also fails to localize to Cajal bodies, but it forms similar phase-light regions that peripherally accumulate endogenous coilin. Conversely, we see no unusual accumulation of coilin in cells expressing DmNopp140-RGG.  相似文献   

4.
Summary During its growth phase, the oocyte is associated with a single highly polyploid nurse cell. Although the nurse cell contains high amounts of cytoplasmic ribonucleic acid, no RNA seems to be transferred to the oocyte. Autoradiographs prepared after pulse labelling with 3H-uridine indicate that the nuclei of both cell types are actively engaged in RNA synthesis during the whole period of oogenesis. Chromosomal RNA synthesis is most intense in oogonia before onset of the growth period. It still proceeds, although at a lower rate, after termination of oocyte growth when all RNA is lost from the nucleoli. Nucleolar RNA synthesis, on the other hand, is strictly correlated with the growth phase proper. Grain counts on chromatin and nucleoli of both egg cells and nurse cells at all stages of oogenesis indicate that nucleolar and chromosomal RNA synthesis are independent of each other to a large extent. It is thought that the type of RNA synthesized within the nucleolus is essentially ribosomal while the chromosomes are primarily engaged in the formation of messenger RNA.  相似文献   

5.
 In Drosophila a remarkable feature of oogenesis is the regression of the nurse cells after dumping their cytoplasmic contents into the oocyte. We have studied the nature of this process at the late stages of egg chamber development. In egg chambers DAPI staining shows highly condensed chromatin from stage 12 and TUNEL labelling shows DNA fragmentation up to stage 14. Gel electrophoresis of the end-labelled DNA, extracted from isolated egg chambers at the same stages of development, shows a ladder typical of apoptotic nuclei. This provides evidence that, during Drosophila oogenesis, the nurse cells undergo apoptosis. Apoptotic nuclei have also been detected in dumping-defective egg chambers, indicating that the cytoplasmic depletion of nurse cells is concurrent with but apparently not the cause of the process. Received: 12 December 1997 / Accepted: 6 January 1998  相似文献   

6.
We describe the accumulation and distribution of poly (A)+RNA during oogenesis and early embryogenesis as revealed by in situ hybridization with a radio-labeled poly (U) probe. The amount of poly (A)+RNA in nurse cell cytoplasm continuously increased untill mid-vitellogenic stage (st. 10), then decreased with the rapid increase of poly (A)+RNA in the oocyte (st. 11). The localization of poly (A)+RNA at stage 10 was in the anterior region of the oocyte, where it is connected by cytoplasmic bridge to the nurse cells. These observations indicate that most of the poly (A)+RNA synthesized in the nurse cells is transferred to the oocyte through the cytoplasmic bridges at stage 10–11. During the remainder of oogenesis (st. 11–14) and during preblastodermal embryogenesis, poly (A)+RNA was evenly distributed over the cytoplasm of oocytes and embryos. At blastoderm stage, poly(A)+RNA became concentrated in the peripheral region of embryos. Though the somatic nuclei of the blastoderm contained a detectable amount of poly (A)+ RNA, the pole cell nuclei did not. The cytoplasmic RNA visualised by acridine orange staining and the poly (A)+RNA detected by hybridization with [3H]poly (U) exhibited identical distributions during oogenesis and early embryogenesis. These observations provide a basis to assess the unique distributions of specific RNA sequences involved in early development.  相似文献   

7.
In the present study we demonstrate the existence of two apoptotic patterns in Drosophila nurse cells during oogenesis. One is developmentally regulated and normally occurs at stage 12 and the other is stage-specific and is sporadically observed at stages 7 and 8 of abnormally developed follicles. The apoptotic manifestation of the first pattern begins at stage 11 and is marked by a perinuclear rearrangement of the actin cytoskeleton and the development of extensive lobes and engulfments of the nurse cell nuclei located proximal to the oocyte. Consequently, at late stage 12 (12C), half of the nurse cell nuclei exhibit condensed chromatin, while at late stage 13 all the nuclei have fragmented DNA, as it is clearly shown by TUNEL assay. Finally, the apoptotic vesicles that are formed during stage 13, are phagocytosed by the neighboring follicle cells and at stage 14 the nurse cell nuclear remnants can be easily detected within the adjacent follicle cell phagosomes. In the second sporadic apoptotic pattern, all the nurse cell nuclei are highly condensed with fragmented DNA, accompanied by a completely disorganized actin cytoskeleton. When we induced apoptosis in Drosophila follicles through an etoposide and staurosporine in vitro treatment, we observed a similar pattern of stage-specific cell death at stages 7 and 8. These observations suggest a possible protective mechanism throughout Drosophila oogenesis that results in apoptosis of abnormal, damaged or spontaneously mutated follicles before they reach maturity.  相似文献   

8.
Summary The distribution of a nuclear antigen ofPleurodeles waltl oocytes, recognized by the monoclonal antibody B24/1, has been studied during oogenesis and early embryonic development. In stage I oocytes the antigen was localized in the nucleoplasm and on two atypical structures of lampbrush chromosomes, the spheres (S) and the mass (M). The immunostaining increased as the oocyte developed. In stage VI oocytes, the nucleoplasm and spheres showed intense staining. At this stage, the nucleoplasm often contained free spheres which were also labelled. The staining of M diminished during oogenesis, as did its size. Immunoblots of nuclear proteins of oocytes at different stages confirmed that there was an accumulation of this protein during oogenesis. During embryonic development, the nuclei of all the cells of blastula and gastrula were labelled by this antibody: there was no embryonic regionalization. Starting from the neurula stage, the staining progressively disappeared from the nuclei of ectodermal and mesodermal cells. In the tailbud stage, only the endodermal cell nuclei showed faint staining. Immunoblots of proteins from embryos of different stages showed that the quantity of this protein was constant until the young gastrula stage and then decreased progressively; in the young tailbud stage, this protein was practically absent. B24/1 is the first described protein of the sphere. This protein is accumulated in the oocyte nucleus and behaves like a maternal polypeptide, shifting early in the nuclei during embryonic development. Thus, B24/1 probably has a function required from the early developmental stages, perhaps in relation with small nuclear ribonucleoproteins.  相似文献   

9.
We have followed the fate of two components of extrachromosomal nucleoli, amplified ribosomal DNA (rDNA) and 7.5 kb precursor rRNA, during early embryogenesis of Xenopus laevis. Other workers have shown that the amount of amplified rDNA accumulated during oogenesis remains unchanged through the 16-cell stage of embryogenesis. Here we show that as embryonic cleavage continues, the amount of amplified rDNA decreases until it is no longer detectable in the early gastrula embryo. In contrast, the amount of 7.5 kb precursor rRNA in eggs, early cleavage stage embryos, or blastula stage embryos is the same as in oocyte nuclei. Since no rRNA synthesis occurs during these early stages, we conclude that the precursor rRNA sequences synthesized in the oocyte are neither processed nor degraded during early development. The amplified rDNA is not replicated in the early embryo even though the chromosomal DNA of the embryo replicates every 30 min during the first 7.5 hr of embryogenesis. When amplified rDNA is purified and then injected into cleaving embryos, however, we find that it is replicated. This finding suggests that some factor(s) prevents the endogenous amplified rDNA from responding to the cellular replication signals. We show that methylation of cytosine in the rDNA is not related to the DNA's capacity for replication in this system since amplified (unmethylated) and chromosomal (methylated) rDNA are both replicated when injected into embryos. The methylation pattern of these rDNAs appears to be maintained after replication in the embryo.  相似文献   

10.
A library of monoclonal antibodies (MAbs) against Drosophila ovarian antigens was established. Each of the MAbs was characterized by its immunohistochemical binding pattern to sections from egg chambers at various stages of oogenesis. Sixteen of the 18 MAbs were found to bind to antigens in mature oocytes. Among the 16 antigens, two were also located in cytoplasm of cell types in the egg chamber other than the oocyte, at all stages of oogenesis. Four made their appearance in nurse cell cytoplasm at mid-vitellogenic stages and shifted to oocyte cytoplasm at a later stage, and ten appeared at the vitellogenic stage and confined their distribution to oocyte cytoplasm. All these antigens were distributed evenly in cytoplasm of mature oocytes. However, some of these antigens were noticed to change their distribution during early embryogenesis as to be localized in a specific region of embryos.  相似文献   

11.
The immunolocalization of An3 protein, an ATP-dependent RNA helicase and a member of the DEAD box family, was compared with the localization of fibrillarin, a protein essential for rRNA processing, and snRNPs, which are involved in mRNA splicing reactions, during oogenesis and embryogenesis in Xenopus laevis. Although An3 protein was detected in the cytoplasm of all stages of oocytes, in most stages An3 protein was also present in the nucleus. Prior to stage I An3 protein was uniformly dispersed throughout the entire germinal vesicle; from stages I to V it was in nucleoli. By stage VI nucleolar labeling with anti An3 disappeared and the protein was no longer present within nuclei. An3 reactivity was also present throughout the nuclei of follicle cells surrounding prestage I to stage VI oocytes. Both cytoplasmic and nuclear An3 staining were present in cells of stages 8 to 35 embryos; however, nuclear staining was punctate and uniformly distributed throughout the nucleoplasm. Fibrillarin was diffusely distributed throughout the entire germinal vesicle prior to stage I, localized exclusively to nucleoli of oocytes between stages I and VI and in nucleoli of stages 12 and 35 embryonic cells. Reactivity for snRNPs (anti-Sm) in germinal vesicles of prestage I oocytes was diffuse, and similar to the distribution of An3 and fibrillarin; in later stage oocytes anti-Sm staining was restricted to a population of granules, much fewer in number and more heterogeneous in size than nucleoli. Anti-Sm activity was apparent in nuclei of embryonic cells of stages 8 to 35 embryos. Although colocalization of the Sm epitope and An3 was not observed in developing oocytes and in embryonic cells, Sm reactive material was frequently found in close association with An3-positive nucleoli (oocytes) and nuclear deposits (embryonic cells). In stage IV and V oocytes treated with actinomycin D (4 μg/ml) to inhibit rRNA synthesis, nucleoli, which continued to possess fibrillarin, lacked An3; staining of follicle cell nuclei for An3 was unchanged. Treatment with 200 μg/ml actinomycin D to block mRNA synthesis, inhibited An3 but not fibrillarin staining in nuclei of prestage I oocytes and follicle cells. The changing patterns of An3 reactivity and the differential effects of actinomycin D on such localizations observed here are consistent with a role for An3 in the processing/production of RNA. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Summary Paedogenetically developing eggs of the gall midgeHeteropeza pygmaea are not deposited, but develop in the hemocoel of the mother larva. The nurse chamber remains present in the cleaving egg, and the follicular epithelium does not form a chorion but envelops the growing egg during embryonic development. It is possible to obtain naked eggs, i.e. eggs lacking the follicular epithelium, which are able to develop up to the blastoderm stage but remain spherical instead of assuming an elongated shape. Oogenesis of normal and naked eggs has been studied at the ultrastructural level with special reference to the nurse chamber. It is shown that the nurse chamber nuclei develop large nucleoli during oogenesis, indicating that the nurse chamber supplies the oocyte with ribosomal RNA (rRNA). The dense bodies in the nurse chamber may represent an intermediate stage in the transport of the rRNA from the nurse chamber to the oocyte; they are probably not related to the polar granules in the oocyte. It is also shown that the intercellular bridge joining the nurse chamber to the oocyte disappears shortly before cleavage initiation. During egg cleavage the follicular epithelium surrounds the nurse chamber, which degenerates and is gradually absorbed by the growing egg plasmodium. Naked cleaving eggs are never attached to a nurse chamber or to relics of it. Naked oocytenurse chamber complexes frequently aggregate, which may indicate a role of the follicular epithelium in follicle separation during normal development.  相似文献   

15.
In the present study, we demonstrate the existence of two distinct apoptotic patterns in nurse cells during Ceratitis capitata oogenesis. One is developmentally regulated and normally occurs during stages 12 and 13, and the other is stage specific and is sporadically observed during stages 7 and 8. The pre-apoptotic manifestation of the first pattern begins at stage 11 and is characterized by the formation of actin bundles. Subsequently, at stages 12 and 13, the nurse cell nuclei exhibit condensed chromatin and contain fragmented DNA, as revealed by TUNEL assay. The apoptotic nurse cell remnants are phagocytosed by the neighboring follicle cells at the end of oogenesis during stages 13 and 14. In the second apoptotic pattern, which occurs sporadically during stages 7 and 8, the nurse cells degenerate and are phagocytosed by the follicular epithelium that contains apoptotic cell bodies. The data presented herein, compared to previous reported results in Drosophila melanogaster and Dacus oleae (Nezis et al., 2000, 2001), strongly suggest that nurse cell apoptosis is a developmentally regulated and phylogenetically conserved mechanism in higher Dipteran. They also suggest that, the sporadic apoptotic pattern consists of a possible protective mechanism throughout oogenesis when damaged or abnormal egg chambers, are eliminated before they reach maturity.  相似文献   

16.
17.
Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12–14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12–14.  相似文献   

18.
Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.  相似文献   

19.
粗糙沼虾卵巢发育的组织学   总被引:5,自引:2,他引:3  
邓道贵  高建国 《动物学杂志》2002,37(5):59-61,F003
利用组织切片技术,对粗糙沼虾的卵子发生和卵巢发育周期进行了组织学研究。根据细胞的大小、细胞核和核仁的大小形态及卵黄积累等情况,将卵子发生划分为4个时期,卵原细胞、卵黄合成期的卵母细胞、成熟前期和成熟期。卵黄合成期的卵母细胞又可细划分为3个时期。粗糙沼虾卵巢发育具有一定的规律性。根据卵巢的大小和颜色及每种雌性生殖细胞在卵巢中所占的比例,将卵巢发育划分为7个时期。并通过卵巢发育规律的探讨,对粗糙沼虾的人工养殖提出了合理的建议。  相似文献   

20.
The accumulation of protein and RNA components of small nuclear U-ribonucleoprotein particles is non-co-ordinate during oogenesis and early embryogenesis in Xenopus laevis. Northern blot hybridization of a cloned Xenopus U2-RNA gene to oocyte and embryo RNAs demonstrates that the amount of small nuclear U2-RNA per oocyte reaches a plateau early in oogenesis (at the start of yolk deposition); further accumulation is not observed in oogenesis, nor in embryogenesis until the late blastula stage. In contrast, we show by immunoblot analysis that the proteins that bind to small nuclear U-RNAs continue to be accumulated after vitellogenesis begins, reaching maximum amounts only at the end of oocyte development. No further accumulation of these proteins is seen during embryogenesis. The consequences of this non-co-ordinate synthesis of small nuclear RNA and small nuclear RNA-binding proteins are as follows: a 10- to 20-fold excess of the protein components of the small ribonucleoprotein particles over small nuclear RNA exists in large oocytes; the bulk of the protein is cytoplasmic, while the RNA is nuclear. Thus the excess protein in the cytoplasm is uncomplexed with RNA. The imbalance between protein and RNA is not corrected until the late blastula or early gastrula stages of embryogenesis, when a tenfold increase in the amount of small nuclear U2-RNA is detected. Thus the protein, but not the RNA, components of small nuclear U-ribonucleoprotein particles are stockpiled in oocytes for later use in embryonic development. During the course of these studies, we also found that there are tissue-specific differences in the Sm-antigenic proteins of X. laevis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号