首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stability of alpha-fetoprotein messenger RNA in mouse yolk sac   总被引:5,自引:0,他引:5  
Changes in the activity of DNA polymerase-α and in subcellular distribution were studied during gastrulation of the sea urchin, Hemicentrotus pulcherrimus. Although the activity of DNA polymerase-α for each embryo was constant up to the blastula stage as reported previously, the enzyme activity increased during gastrulation by about twofold prior to an increase in its DNA content. Thereafter the enzyme activity remained constant at a high level until the early pluteus stage. During gastrulation, an increase in the fraction of DNA polymerase-α was associated with the rough endoplasmic reticulum. During the period between the gastrula and pluteus stages, the cytoplasmic DNA polymerase-α activity decreased gradually with a concomitant increase of activity in the nucleus fraction. The timing of this increase in the nucleus coincided with the increase of DNA content per embryo. These results suggest that DNA polymerase-α accumulates on the rough endoplasmic reticulum during gastrulation and then translocates to the nucleus for DNA synthesis as seen before the blastula stage. DNA polymerase-α obtained from gastrula nuclei did not associate with the endoplasmic reticulum from gastrulae. DNA polymerase-α obtained from the gastrula endoplasmic reticulum membranes became bound to the salt-washed membranes from gastrulae but not to those from unfertilized eggs. Likewise, DNA polymerase-α from the rough endoplasmic reticulum of unfertilized eggs became attached to salt-washed membranes from unfertilized eggs, but not to those from gastrulae. This suggests that DNA polymerase-α is synthesized anew, and a transition of both DNA polymerase-α and endoplasmic reticulum occurs at the gastrula stage.  相似文献   

2.
Small RNAs in sea urchins were examined in order to characterize developmental changes in their level, subcellular localization, synthesis, and association with proteins and other RNAs. Small RNAs such as the U snRNAs, 5S and 5.8S rRNAs, and 7S RNAs were identified by their mobility on highly cross-linked acrylamide gels. In addition, 7SL and U1 RNAs were identified by northern blot hybridization to cloned human and sea urchin probes, respectively. The level, subcellular localization, and association with proteins or RNA do not change for most small RNAs from fertilization to blastula, even though this is the time when the stored maternal pool of many small RNAs is being supplemented and replaced by embryonically synthesized RNAs. New embryonic synthesis of small RNAs was first detected at the 8-12 hr blastula stage. Although the predicted subsets of the total small RNA pool can be found in the appropriate subcellular compartments, newly synthesized small RNAs have a predominantly cytoplasmic localization: All of the newly synthesized small RNAs were found to be constituents of small RNPs. The RNPs containing newly synthesized small RNAs had sedimentation rates indistinguishable from their maternal counterparts. Thus, on the basis of sedimentation rate, no gross differences could be detected between maternal and embryonic small RNP pools. These small RNPs include a cytoplasmic RNP containing newly synthesized U1 snRNA and the sea urchin signal recognition particle (SRP) containing the 7SL, RNA. We have also identified a small RNP bearing the 5S rRNA which is present in both eggs and embryos. The presence of multiple, abundant, small RNAs and RNPs that are maintained at constant levels in particular subcellular fractions throughout development suggests that small RNAs may be involved in many more cellular activities than have so far been described.  相似文献   

3.
The structure of 7SL RNA has been probed by chemical modification followed by primer extension, using four substrates: (i) naked 7SL RNA; (ii) free signal recognition particle (SRP); (iii) polysome bound SRP; and (iv) membrane bound SRP. Decreasing sensitivity to chemical modification between these different substrates suggests regions on 7SL RNA that: bind proteins associated with SRP might interact with ribosomes; and are protected by binding to membranes. Other areas increase in chemical sensitivity, exemplified by a tertiary interaction present in naked 7SL RNA but not in free SRP. Such changes suggest that 7SL RNA changes its conformation during the SRP cycle. These conformational changes could be a necessary component to move through the SRP cycle from one stage to the next.  相似文献   

4.
Mature unfertilized eggs of the sea urchin Lytechinus pictus contain multiple alpha-tubulin mRNAs, which range in size from 1.75 to 4.8 kb, and two beta-tubulin mRNAs, 1.8 and 2.25 kb. These mRNAs were found at similar levels throughout the early cleavage stages. RNA gel blot hybridizations showed that prominent quantitative and qualitative changes in tubulin mRNAs occurred between the early blastula and hatched blastula stages. The overall amounts of alpha- and beta-tubulin mRNAs increased two- to fivefold between blastula and pluteus. These increases were due mainly to a rise in a 1.75-kb alpha RNA and a new 2.0-kb beta RNA. Other, minor changes also occurred during subsequent development. All size classes of alpha- and beta-tubulin RNAs in early and late embryos contained poly(A)+ translatable sequences. As reported earlier, some of each of the alpha RNAs, but neither of the beta RNAs, are translated in the egg and a small portion of each of the stored alpha and beta RNAs is recruited onto polysomes within 30 min of fertilization. In the work described here, subsequent development up to the morula stage was accompanied by a gradual recruitment of tubulin mRNAs into polysomes. By the early blastula stage, most of the maternal tubulin sequences were associated with polysomes. In contrast to the gradual recruitment of maternal sequences throughout cleavage, the tubulin mRNAs which appeared at the blastula stage showed no delay in entering polysomes. The exact fraction of each mRNA that was translationally active at later stages varied somewhat among the individual mRNAs. From the differential hybridization patterns of egg, embryo, and testis RNAs to various tubulin cDNA and genomic DNA probes, it is concluded that at least one gene producing maternal alpha mRNA is different from a second one which is expressed only in testis. Each of the three embryonic beta RNAs is encoded by a different beta gene; at least two of these different beta genes are also expressed in testis.  相似文献   

5.
Sea-urchin embryo RNAs of 9 kb and 7 kb hybridise with a collagen-coding probe. The delta Tm of the hybrids indicates a 70% sequence identity between these RNA regions. Both RNAs are localised in the pluteus endomesoderm, but accumulate over different developmental periods: the 9 kb RNA first appears in the blastula and reaches a maximum concentration during the gastrula stages, while the 7 kb RNA is first detected in the gastrula and is at maximal concentration in the pluteus larva. Animalization by transient exposure of the early stage embryo to Zn2+ alters the developmental profile of the 9 kb collagen mRNA in a way that is clearly different from responses of other mRNAs whose accumulations are initiated during the blastula stage (Nemer, M. (1986) Dev. Biol. 114, 214-224).  相似文献   

6.
Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA.  相似文献   

7.
8.
Summary Glucose-6-phosphatase (G-6-Pase) activity was analyzed during early embryogenesis of the sea urchinS. purpuratus. This activity is detected in very low levels in unfertilized eggs and early embryos but is present at high levels in preparations of endoplasmic reticulum (microsomes) from gastrula stage embryos. The approximately eight-fold increase in the relative activity of G-6-Pase associated with the ER occurs abruptly during a 12 h interval at gastrulation, and thereafter remains at a level comparable to that found in mammalian liver microsomes. The enzyme activity associated with the ER of gastrula stage embryos was completely eliminated from the microsomal pellet when cell lysates were first treated with non-ionic detergent. Analysis of germlayer tissues from late stage pluteus embryos revealed that G-6-Pase activity was more highly enriched in microsomes of endo/mesoderm tissues as compared to microsomes from ectoderm. The increase in ER associated G-6-Pase activity during embryonic development and its enriched activity in the ER of endo/mesoderm, as well as the observation that the signal recognition particle becomes associated with the ER at gastrulation (Le Blanc and Infante 1989), opens the question that this cellular organelle may be differentiating during embryogenesis in sea urchins.  相似文献   

9.
The temporal expression of two cell surface proteins, called BEP1 and BEP4, during Paracentrosus lividus embryonic development was studied. These proteins are found in both monomeric and dimeric forms in egg and embryos and we have established that their specific form is related to their being in the cytoplasm or on the cell surface. The spatial distribution of BEP1 and BEP4 proteins in eggs and embryos was established by whole mount immunohistochemistry. These proteins are located in the animal part of unfertilized and fertilized eggs; thereafter they are much less represented in structures derived from the vegetal cells of the embryo such as the micromeres of the 16 cell stage, the primary mesenchyme of blastula and the gut of gastrula. At the prism stage BEP1 and BEP4 proteins are present to some ectodermal parts and thereafter, at the pluteus stage, to the oral region.  相似文献   

10.
1. The presence of serotonin binding sites in blastula, gastrula, prism, and pluteus embryos of the sea urchin, Arbacia punctulata, was investigated by the binding of radiolabelled serotonin to dissociated embryo cells. 2. [3H]serotonin binding sites were identified in prism, early pluteus, and advanced pluteus larvae, but not in blastula or gastrula embryos. 3. The ontogeny of [3H]serotonin binding activity closely parallels that of serotonin content as previously reported in Paracentrotus lividus embryos (Toneby, 1977a). 4. Results of this study support a regulatory role of serotonin in developmental processes in postgastrula sea urchin embryos.  相似文献   

11.
Structural gene sequences active in a variety of sea urchin adult and embryo tissues are compared. A single-copy 3H-DNA fraction, termed mDNA, was isolated, which contains sequences complementary to the messenger RNA present on gastrula stage polysomes. Gastrula message sequences are 50 fold concentrated in the mDNA compared to total single-copy DNA. mDNA reactions were carried out with excess mRNA from blastula, pluteus, exogastrula, adult ovary, tubefoot, intestine, and coelomocytes, and with excess total mature oocyte RNA. A single-copy 3H-DNA fraction totally devoid of gastrula message sequences, termed null mDNA, was also reacted with these RNAs. Large differences in the extent of both mDNA and null mDNA reaction with the various RNAs were observed, indicating that in each state of differention a distinct set of structural genes is active, generally characterized by several thousand specific sequences. The complexity of gastrula mRNA was shown in previous work to be about 17 × 106 nucleotides. In units of 106 nucleotides, the complexities of the RNA sequence reacting with mDNA and with null mDNA in each tissue are, respectively, as follows: intestine mRNA; 2.1 and 3.7; coelomocyte mRNA: 3.5 and ≤1.4; tubefoot mRNA: 2.7 and ≤0.4; ovary mRNA: 13 and 6.7; oocyte total RNA: 17 and 20; blastula mRNA: 12 and 15; pluteus mRNA: 14 and ≤0.6; exogastrula mRNA: 14 and ≤0.6. The total complexity of each mRNA population is the sum of these values, as verified for several cases by reactions with total single-copy DNA. A relatively small set of mRNAs, the complexity of which is about 2.1 × 106 nucleotides, appears to be shared by several of the tissues studied.  相似文献   

12.
We have compared the total single-copy sequences transcribed as nuclear RNA in blastula and pluteus stage embryos of the sea urchin Tripneustes gratilla by hybridization of excess nuclear RNA with purified radioactive single-copy DNA. The kinetics of hybridization of either blastula or pluteus nuclear RNA with single-copy DNA show a single pseudo-first-order reaction with 34% of the single-copy genome. From the rate of the reaction and the purity of the nuclear RNA, it can be estimated that the reacting RNAs are present on the average at a concentration of one molecule per 14 nuclei. A mixture of blastula and pluteus RNA also hybridizes with 34% of the single-copy genome, indicating that the total complexity of RNAs transcribed at both stages is no greater than transcribed at each stage alone. The identity of the sequences transcribed by blastula and pluteus embryos was further examined by fractionation of the labeled DNA into sequences complementary and not complementary to pluteus RNA. This was achieved by hybridization of single-copy DNA to high pluteus RNA Cot, and separation of the hybridized and nonhybridized DNA on hydroxylapatite. Using either the DNA complementary or noncomplementary with pluteus RNA, essentially identical amounts of RNA:DNA hybrids are formed at high RNA Cot with blastula or pluteus RNA. Gross changes in the total RNA sequences transcribed do not appear to be involved in the developmental changes between blastula and pluteus, even though 45% of the mRNA sequences change between these two stages (Galau et al., 1976).  相似文献   

13.
Metallothionein (MT) is shown to be present in sea urchin embryos on the basis of its characteristic properties as a small protein (6–7 Da) of extraordinarily high cysteine content, whose biosynthesis is readily induced by heavy metals. Induction by Zn2+ results in the accumulation of the cysteine-rich MT protein, a 0.8 kb MT mRNA and a 2.9 kb nuclear RNA. The amount of MT mRNA is regulated intrinsically through the course of embryogenesis to the pluteus stage: A maternal MT mRNA is poly(A)-deficient and is polyadenylated after fertilization. New MT mRNA begins to accumulate between the seventh and eighth cell cleavage, reaches a maximum at the mesenchyme blastula stage, decreases during gastrulation, and rises again in the early pluteus stage. “Animalizing” embryos with Zn2+ during early embryogenesis causes a sustained accumulation of MT mRNA to levels greater than 25 times the normal amount. MT mRNA is present in high amount in the ectoderm of the pluteus, but is barely detectable in the mesoderm-endoderm tissue fraction. Treatment of either the pluteus or its isolated tissue fractions with Zn2+ results in the induction of MT mRNA accumulation in the mesoderm-endoderm but not in the already MT mRNA-enriched ectoderm. Furthermore, differences in Zn2+ induction of the MT gene in the blastula and gastrula are consistent with a developmental pattern in which MT gene expression is maintained constitutively at a high level in the ectoderm and at a low level in the mesoderm-endoderm tissues, which are, however, preferentially inducible by Zn2+.  相似文献   

14.
The signal-recognition particle (SRP) is a ribonucleoprotein (RNP) complex consisting of six different polypeptide chains and a 7SL RNA. It participates in initiating the translocation of proteins across the membrane of the endoplasmic reticulum. SRP was disassembled in 2 M KCl into three components, one RNP composed of 7SL RNA and the 54-kDa and 19-kDa proteins, and two heterodimers consisting of the 72/68-kDa and the 14/9-kDa proteins respectively. The 54-kDa protein could be released from the RNP subparticle by chromatography on DEAE-Sepharose in Mg2+-depleted buffer, while the 19-kDa protein remained bound to the 7SL RNA. The domain structure of SRP proteins was probed by using mild elastase treatment and protein-specific antibodies. It was found that the 72, 68, 54 and 19-kDa SRP proteins were proteolytically processed in distinct steps. Most remarkably a protein fragment of 55-kDa, generated from the 72-kDa SRP protein, and a 35-kDa fragment from the 54-kDa SRP protein were both released from the RNP particle. Fragments generated from the 68-kDa protein and detectable with the anti-(68-kDa protein) antibody remained associated with the RNP particle. Cleavage of the SRP proteins by elastase at 2.5 micrograms/ml resulted in partial loss of activity, while 10 micrograms/ml caused complete inactivation of the particle. Neither the elongation arrest of IgG light chain nor its translocation across SRP-depleted microsomal membranes was promoted. The implications of these results on the possible interaction between the SRP subunits are discussed.  相似文献   

15.
The mitogen activated protein (MAP) kinase signaling cascade has been implicated in a wide variety of events during early embryonic development. We investigated the profile of MAP kinase activity during early development in the sea urchin, Strongylocentrotus purpuratus, and tested if disruption of the MAP kinase signaling cascade has any effect on developmental events. MAP kinase undergoes a rapid, transient activation at the early blastula stage. After returning to basal levels, the activity again peaks at early gastrula stage and remains high through the pluteus stage. Immunostaining of early blastula stage embryos using antibodies revealed that a small subset of cells forming a ring at the vegetal plate exhibited active MAP kinase. In gastrula stage embryos, no specific subset of cells expressed enhanced levels of active enzyme. If the signaling cascade was inhibited at any time between the one cell and early blastula stage, gastrulation was delayed, and a significant percentage of embryos underwent exogastrulation. In embryos treated with MAP kinase signaling inhibitors after the blastula stage, gastrulation was normal but spiculogenesis was affected. The data suggest that MAP kinase signaling plays a role in gastrulation and spiculogenesis in sea urchin embryos.  相似文献   

16.
cAMP-dependent protein kinase was found in the sediment obtained by centrifuging a homogenate of sea urchin embryos at 10,000g for 20 min, and was solubilized with 1% Triton X-100. This enzyme was eluted at 0.16 M NaCl in a linear concentration gradient on a DEAE-cellulose column, at which cAMP-dependent protein kinase found in the supernatant was also eluted. The enzyme activity was enhanced about 1.5-fold in the presence of 1 μM cAMP, and increased somewhat by adding cGMP or cIMP. The activation by cAMP of protein kinase in the sedimentable fraction was lower than in the supernatant fraction. The properties of the enzyme found in the 10,000g sediment and in the supernatant differ somewhat. The activity of the cAMP-dependent protein kinase in the 10,000g sediment was high in the embryos at the blastula, the swimming blastula, and the mesenchyme blastula stages. On the other hand, the activity was undetectable in unfertilized eggs and in embryos at the morula, the gastrula, and the pluteus stages.  相似文献   

17.
The sulfating system in sea urchin embryos was examined, using the labeled precursor inorganic [35S]sulfate in vivo and [35S]3'-phosphoadenosine 5'-phosphosulfate ([35S]PAPS) in a cell-free system. In vivo incorporation of [35pS]sulfate into the trichloroacetic acid (TCA)-insolubte fraction increased gradually during sea urchin development, whereas radioactivity of [35S]sulfate contained in the TCA-soluble fraction showed a conspicuous peak at the late gastrula stage.
In a cell-free system, the particulate fraction showed marked incorporation of [35pS]JPAPS. This sulfating activity was highest at pH 6.4 to 7.2 and at 27°C, and it was strongly inhibited by Hg 2+and p-chloromercuribenzoic acid.
The sulfating activity was quite low in fertilized eggs, but then increased rapidly up to the swimming blastula stage. The activity in the particulate fraction precipitated at 10,000 xg increased gradually and that in the particulate fraction precipitated at 100,000 xg was almost constant from the swimming blastula stage to the pluteus stage.  相似文献   

18.
Results of a number of pharmacological studies suggest that catecholamines play a regulatory role in cleavage, morphogenesis and cell differentiation during early animal embryonic development. Few studies, however, have actually assayed for levels of catecholamines in these early embryos by methods that are both sensitive and specific. In this investigation the catecholamines dopamine, norepinephrine and epinephrine and their precursor, dopa and metabolites were determined in eight different embryonic stages of the sea urchin, Lytechinus pictus from hatched blastula to late pluteus larva, using high performance liquid chromatography with electrochemical detection. Levels of each of the catecholamines exhibited unique developmental profiles and are consistent with a role for epinephrine in blastula and early gastrula embryos and for norepinephrine in gastrulation. Changes in levels of catecholamine precursor and metabolites suggest a changing pattern of synthetic and metabolic enzyme activity, which can, for the most part, explain the fluctuations in catecholamine levels during development from blastula to the pluteus larva stage.  相似文献   

19.
Lipid peroxidation (LP) and glutathione content were studied at different developmental stages of the sea urchinStrongylocentrotus intermedius: egg cell, fertilization, 4 blastomers, blastula, hatching, gastrula, prism, pluteus. A high rate of LP in the total membrane fraction of sea urchin embryos and larvae at the stages from the egg cell to hatching was observed at enzymatic and nonenzymatic activation of LP. The LP rate was significantly reduced at the gastrula stage and at subsequent stages, there was practically no further development of the process. The glutathione concentration remained unchanged at different stages. The alterations in LP seem to reflect participation of free radicals in regulation of individual development.  相似文献   

20.
The virion incorporation of 7SL, the RNA component of the host signal recognition particle (SRP), has been shown for several simple retroviruses. Data here demonstrate that 7SL is also packaged by HIV-1, in sevenfold molar excess of genomic RNA. Viral determinants of HIV-1 genome and primer tRNA packaging were not required for 7SL incorporation, as virus-like particles with only minimal assembly components efficiently packaged 7SL. The majority of 7SL within cells resides in ribonucleoprotein complexes bound by SRP proteins, and most SRP protein exists in signal recognition particles. However, Western blot comparison of virion and cell samples revealed that there is at least 25-fold less SRP p54 protein per 7SL RNA in HIV-1 particles than in cells. Comparing 7SL:actin mRNA ratios in virions and cells revealed that 7SL RNA appears selectively enriched in virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号