首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
赵怡  凌辉生  李任强 《生态科学》2011,30(2):174-177
为了实现Mn-SOD基因在大肠杆菌(E.coli)中的可溶性表达,根据枯草芽孢杆菌(Bacillus subtilis)168sodA核酸序列设计引物,以枯草芽孢杆菌ATCC 9372基因组为模板,PCR扩增获得了Mn-SOD基因.将此基因重组至原核表达载体pET-28a,构建含Mn-SOD基因的重组表达质粒,并转化至大肠杆菌BL21(DE3).异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达获得Mn-SOD,蛋白分子量约为26kD,占全菌蛋白的5.6%.改良的连苯三酚自氧化法测定SOD活力,菌体可溶性总蛋白SOD比活为51.09U·mg-1,是对照组的.8倍.枯草芽孢杆菌ATCC 9372 Mn-SOD基因在大肠杆菌BL21(DE3)中首次成功表达,产物具有较高的可溶性和活性,为大量制备Mn-SOD奠定了基础.  相似文献   

2.
Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis   总被引:14,自引:0,他引:14  
W M de Vos  S C de Vries  G Venema 《Gene》1983,25(2-3):301-308
By means of homopolymer dG-dC tailing, using PstI linearized pBR327 as vector, we constructed small plasmids containing the entire Escherichia coli recA gene. The 1.8-kb inserts were recloned in the Bacillus subtilis expression vector pPL608 in a B. subtilis recE4 strain. Analysis of plasmid-coded proteins showed expression of the E. coli recA gene both in minicells and whole cells of B. subtilis. Expression was under control of the bacteriophage SP02 promoter, which is part of pPL608. A recA-expressing plasmid completely abolished the transformation deficiency of the recE4 mutant as well as its sensitivity to mitomycin C (MC). The expressed recA gene also restored recombination in other B. subtilis strains lacking the recE gene product. These results indicate a high similarity between the functions of the E. coli RecA and B. subtilis RecE proteins.  相似文献   

3.
A genomic library of Bacillus lyticus was constructed in lambda GEM 11 vector and screened for the xylanase gene using Congo red plate assay. A 16-kb fragment containing the xylanase gene was obtained which was further subcloned using Mbo I partial digestion in an E. coli pUC 19 vector. A 1.3-kb sub-fragment was obtained which coded for a xylanase gene of Mr 23,650 Da. This fragment was sequenced and the homology was checked with known xylanases. The maximum homology was 97%, which was obtained with an endo xylanase gene from Bacillus species at the DNA level, while the translated sequence showed only one amino acid change from alanine to serine at position number 102. Expression was checked in E. coli, using the native promoter, and an extracellular activity of 5.25 U/mL was obtained. Cloning of the gene was done in Bacillus subtilis using a shuttle vector pHB 201, which resulted in increasing the basal level xylanase activity from 14.02 to 22.01 U/mL.  相似文献   

4.
A DNA fragment containing the Escherichia coli D-xylose isomerase gene and D-xylulokinase gene had been isolated from an E. coli genomic bank constructed by Clarke and Carbon. The D-xylose isomerase gene coding for the synthesis of an important industrial enzyme, xylose isomerase, was subcloned into a Bacillus-E. coli bifunctional plasmid. It was found that the intact E. coli gene was not expressed in B. subtilis, a host traditionally used to produce industrial enzymes. An attempt was then made to express the E. coli gene in B. subtilis by fusion of the E. coli xylose isomerase structural gene downstream to the promoter of the penicillinase gene isolated from Bacillus licheniformis. Two such fused genes were constructed and they were found able to be expressed in both B. subtilis and E. coli.  相似文献   

5.
DNA fragments of Bacillus subtilis were inserted into a plasmid vector that can multiply in Escherichia coli cells, and foreign genes were expressed under the control of the lac promoter. By selecting hybrid plasmids that confer an increased resistance to alkylating agents on E. coli ada- mutant cells, the B. subtilis gene dat, which encodes O6-methylguanine-DNA methyltransferase, was cloned. The Dat protein, with a molecular weight of about 20,000, could transfer the methyl group from methylated DNA to its own protein molecule. Based on the nucleotide sequence of the gene, it was deduced that the protein comprises 165 amino acids and that the molecular weight is 18,779. The presumptive amino acid sequence of Dat protein is homologous to the sequences of the E. coli Ogt protein and the C-terminal half of the Ada protein, both of which carry O6-methylguanine-DNA methyltransferase activity. The pentaamino acid sequence Pro-Cys-His-Arg-Val, the cysteine residue of which is the methyl acceptor site in Ada protein, was conserved in the 3 methyltransferase proteins. The structural similarity of these methyltransferases suggests possible evolution from a single ancestral gene.  相似文献   

6.
B Vosman  J Kooistra  J Olijve  G Venema 《Gene》1987,52(2-3):175-183
With the aim of cloning genes involved in transformation of Bacillus subtilis, a set of transformation-deficient mutants was isolated by means of insertional mutagenesis with plasmid pHV60 (Vosman et al., 1986). Analysis of these mutants showed that those mapping in the aroI region lacked the DNA-entry nuclease activity. Plasmid pHV60 derivatives, containing flanking chromosomal DNA fragments, were isolated from these mutants and were used to screen a library of B. subtilis chromosomal DNA in phage lambda EMBL4. In Escherichia coli lysates, prepared with the phages that hybridized to the pHV60-based probe, a prominent nuclease activity could be detected. The nuclease encoded by the phage DNA had the same Mr as the B. subtilis DNA-entry nuclease and its activity was strongly stimulated by Mn2+, which is also characteristic for the B. subtilis DNA-entry nuclease. From these results it was concluded that the gene specifying the B. subtilis DNA-entry nuclease had been cloned. It was shown that the nuclease activity was specified by a 700-bp EcoRI-PstI fragment.  相似文献   

7.
The gene coding for an extracellular lipase of Bacillus subtilis 168 was cloned and found to be expressed in Escherichia coli. Enzyme activity measurements showed no fatty acid chain length preference. A set of Tn5 insertions which inactivate the gene were localized and used to initiate its sequencing. The nucleotide sequence was determined on two independent clones expressed in E. coli. In one of these clones, the sequence revealed a frameshift, due to the presence of an additional adenine in the N-terminal region, which caused the interruption of the open reading frame, probably allowing translation to initiate at a second ATG codon. The sequence of the wild-type lip gene from B. subtilis was confirmed on the chromosomal fragment amplified by polymerase chain reaction (PCR). When compared to other lipases sequenced to date, the enzyme described here lacks the conserved pentapeptide Gly-X-Ser-X-Gly supposed to be essential for catalysis. However, alignments of several microbial lipase sequences suggest that the pentapeptide Ala-X-Ser-X-Gly present in the lipase B. subtilis may function as the catalytic site. Homologies were found in the N-terminal protein region with lipases from different Pseudomonas species. The predicted M(r) and isoelectric point for the mature protein are 19,348 and 9.7 respectively.  相似文献   

8.
The gene encoding beta-1,4-glucanase in Bacillus subtilis DLG was cloned into both Escherichia coli C600SF8 and B. subtilis PSL1, which does not naturally produce beta-1,4-glucanase, with the shuttle vector pPL1202. This enzyme is capable of degrading both carboxymethyl cellulose and trinitrophenyl carboxymethyl cellulose, but not more crystalline cellulosic substrates (L. M. Robson and G. H. Chambliss, Appl. Environ. Microbiol. 47:1039-1046, 1984). The beta-1,4-glucanase gene was localized to a 2-kilobase (kb) EcoRI-HindIII fragment contained within a 3-kb EcoRI chromosomal DNA fragment of B. subtilis DLG. Recombinant plasmids pLG4000, pLG4001a, pLG4001b, and pLG4002, carrying this 2-kb DNA fragment, were stably maintained in both hosts, and the beta-1,4-glucanase gene was expressed in both. The 3-kb EcoRI fragment apparently contained the beta-1,4-glucanase gene promoter, since transformed strains of B. subtilis PSL1 produced the enzyme in the same temporal fashion as the natural host B. subtilis DLG. B. subtilis DLG produced a 35,200-dalton exocellular beta-1,4-glucanase; intracellular beta-1,4-glucanase was undetectable. E. coli C600SF8 transformants carrying any of the four recombinant plasmids produced two active forms of beta-1,4-glucanase, an intracellular form (51,000 +/- 900 daltons) and a cell-associated form (39,000 +/- 400 daltons). Free exocellular enzyme was negligible. In contrast, B. subtilis PSL1 transformed with recombinant plasmid pLG4001b produced three distinct sizes of active exocellular beta-1,4-glucanase: approximately 36,000, approximately 35,200, and approximately 33,500 daltons. Additionally, B. subtilis PSL1(pLG4001b) transformants contained a small amount (5% or less) of active intracellular beta-1,4-glucanase of three distinct sizes: approximately 50,500, approximately 38,500 and approximately 36,000 daltons. The largest form of beta-1,4-glucanase seen in both transformants may be the primary, unprocessed translation product of the gene.  相似文献   

9.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

10.
Abstract An anaerobic ethanologenic strain of extremely thermophilic bacteria isolated from a New Zealand hot spring resembled Thermoanaerobium brockii in morphology and cell-wall ultrastructure. However, antibodies produced against the New Zealand isolate did not crossreact with the type strain of T. brockii . The New Zealand isolate strain Tok6-B1 fermented a wider range of carbohydrate substrates, including pentoses, and was less inhibited by a hydrogen atmosphere. Ethanol and acetate were major end-products and lactate a minor product of glucose fermentation. Under a hydrogen atmosphere, these 3 end-products were formed in approximately equal amounts.  相似文献   

11.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

12.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed for the maxicell product. The B. subtilis phosphatidylserine synthase showed 35% amino acid sequence homology to the yeast Saccharomyces cerevisiae phosphatidylserine synthase and had a region with a high degree of local homology to the conserved segments in some phospholipid synthases and amino alcohol phosphotransferases of E. coli and S. cerevisiae, whereas no homology was found with that of the E. coli counterpart. A hydropathy analysis revealed that the B. subtilis synthase is very hydrophobic, in contrast to the hydrophilic E. coli counterpart, consisting of several strongly hydrophobic segments that would span the membrane. A manganese-dependent phosphatidylserine synthase activity, a characteristic of the B. subtilis enzyme, was found exclusively in the membrane fraction of E. coli (pssA1) cells harboring a B. subtilis pss plasmid. Overproduction of the B. subtilis synthase in E. coli cells by a lac promoter system resulted in an unusual increase of phosphatidylethanolamine (up to 93% of the total phospholipids), in contrast to gratuitous overproduction of the E. coli counterpart. This finding suggested that the unusual cytoplasmic localization of the E. coli phosphatidylserine synthase plays a role in the regulation of the phospholipid polar headgroup composition in this organism.  相似文献   

13.
From a cosmid gene bank of Bacillus cereus GP4 in Escherichia coli we isolated clones which, after several days of incubation, formed hemolysis zones on erythrocyte agar plates. These clones contained recombinant cosmids with B. cereus DNA insertions of varying lengths which shared some common restriction fragments. The smallest insertion was recloned as a PstI fragment into pJKK3-1, a shuttle vector which replicates in Bacillus subtilis and E. coli. When this recombinant plasmid (pJKK3-1 hly-1) was transformed into E. coli, it caused hemolysis on erythrocyte agar plates, but in liquid assays no external or internal hemolytic activity could be detected with the E. coli transformants. B. subtilis carrying the same plasmid exhibited hemolytic activity at levels comparable to those of the B. cereus donor strain. The hemolysin produced in B. subtilis seemed to be indistinguishable from cereolysin in its sensitivity to cholesterol, activation by dithiothreitol, and inactivation by antibodies raised against cereolysin. When the recombinant DNA carrying the cereolysin gene was used as a probe in hybridization experiments with chromosomal DNA from a streptolysin O-producing strain of Streptococcus pyogenes or from listeriolysin-producing strains of Listeria monocytogenes, no positive hybridization signals were obtained. These data suggest that the genes for these three SH-activated cytolysins do not have extended sequence homology.  相似文献   

14.
The structural gene for glutamine synthetase (glnA) in Bacillus subtilis ( glnAB ) cloned in the lambda vector phage Charon 4A was used to transduce a lysogenic glutamine auxotrophic Escherichia coli strain to prototrophy. The defective E. coli gene ( glnAE ) was still present in the transductant since it could be transduced. In addition, curing of the prototroph resulted in the restoration of glutamine auxotrophy. Proteins in crude extracts of the transductant were examined by a "Western blotting" procedure for the presence of B. subtilis or E. coli glutamine synthetase antigen; only the former was detected. Growth of the strain in media without glutamine was not curtailed even when the bacteriophage lambda pL and pRM promoters were hyperrepressed . The specific activities and patterns of derepression of glutamine synthetase in the transductant were similar to those of B. subtilis, with no evidence for adenylylation. The information necessary for regulation of glnAB must be closely linked to the gene and appears to function in E. coli.  相似文献   

15.
Abstract The gene coding for the thermostable α-amylase Bacillus licheniformis has been isolated from a direct shotgun in Escherichia coli using the bacteriophage lambda as a vector. The fragment containing the α-amylase gene has been sub-cloned in pBR322 and its restriction map determined. The α-amylase produced by the E. coli clones retained the thermostability of the B. licheniformis enzyme. Expression and properties of the gene product in E. coli and Bacillus subtilis have been examined.  相似文献   

16.
Bacillus subtilis strain B10 was isolated for degumming of ramie blast fibers, and a fragment of 642-bp was amplified from chromosomal DNA by using primers directed against the sequence of Bacillus subtilis xylanase gene given in GenBank. The positive clones were screened on the selected LB agar plates supplemented with xylan by Congo-red staining method. The recombinant plasmid from one positive clone was used for further analysis and DNA sequencing. The gene sequence is different from the reported xylanase gene sequence in sites of two base pairs. The recombinant plasmid was expressed in Escherichia coli, and xylanase activity was measured. The xylanase distribution in extracellular, intracellular and periplasmic fractions were about 22.4%, 28.0% and 49.6%, respectively. The xylanase had optimal activity at pH 6.0 and 50 degrees C.  相似文献   

17.
We cloned and characterized a gene, tgl, encoding transglutaminase in Bacillus subtilis. The tgl gene contained a open reading frame 735-nucleotides long that encoded a 245-residue protein with the molecular weight of 28,300. The deduced amino acid sequence had little sequence similarity with sequences of other transglutaminases from a Streptoverticillium sp. or from mammals. The -10 and -35 regions of a putative promoter resembled the consensus sequence for the σK-dependent promoter. In addition, a sequence similar to the consensus sequence for the GerE binding site was found upstream from this region. These findings suggested that tgl was transcribed in the mother cells during a late stage of sporulation. Evidence for this suggestion was that transglutaminase activity was detected in sporulating cells during the same stage. Transglutaminase activity was detected in Escherichia coli cells transformed with a plasmid for expression of the tgl gene.  相似文献   

18.
19.
The beta-galactosidase gene from the chromosome of Streptococcus thermophilus, strain 6 kb, has been cloned on a vector plasmid pBR322. The corresponding gene has been found to be located on the Pst1 DNA fragment. The restriction map of this 6 kb fragment has been constructed. The shortening of the DNA fragment carrying the beta-galactosidase gene has been achieved by digestion of the recombinant derivative of pBR322 by the restriction endonuclease Sau3A under the conditions of incomplete hydrolysis. The obtained fragments have been cloned into the BamHI site in the berepliconed shuttle vector pCB20 for grampositive and gramnegative bacteria. The obtained recombinant plasmids contained the beta-galactosidase gene in the inserted fragments of different length. Expression of the cloned beta-galactosidase gene in Escherichia coli and Bacillus subtilis cells has been studied.  相似文献   

20.
U Günthert  L Reiners  R Lauster 《Gene》1986,41(2-3):261-270
The DNA methyltransferase (Mtase) genes of the temperate Bacillus subtilis phages SPR (wild type and various mutants), phi 3T, rho 11 and SP beta have been cloned and expressed in Escherichia coli and B. subtilis host-plasmid vector systems. Mtase activity has been quantitated in these clones by performing in vitro methylation assays of cell-free extracts. The four-phage Mtase genes differ in the amount of Mtase synthesized when transcribed from their genuine promoters. In B. subtilis as well as in E. coli the SPR Mtase is always produced in smaller amounts than the other phage Mtases. Expression levels of the SPR Mtase are dependent on the strength of the upstream vector promoter sequences. Overproduction of the SPR wild-type and mutant enzymes was achieved in E. coli (inducible expression) by fusions to the lambda pL or the tac promoter and in B. subtilis (constitutive expression) by means of the phage SP02 promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号