首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetically improved transgenic fish possess many beneficial economic traits; however, the commercial aquaculture of transgenic fish has not been performed till date. One of the major reasons for this is the possible ecological risk associated with the escape or release of the transgenic fish. Using a growth hormone transgenic fish with rapid growth characteristics as a subject, this paper analyzes the following: the essence of the potential ecological risks posed by transgenic fish; ecological risk in the current situation due to transgenic fish via one-factor phenotypic and fitness analysis, and mathematical model deduction. Then, it expounds new ideas and the latest findings using an artificially simulated ecosystem for the evaluation of the ecological risks posed by transgenic fish. Further, the study comments on the strategies and principles of controlling these ecological risks by using a triploid approach. Based on these results, we propose that ecological risk evaluation and prevention strategies are indispensable important components and should be accompanied with breeding research in order to provide enlightments for transgenic fish breeding, evaluation of the ecological risks posed by transgenic fish, and development of containment strategies against the risks.  相似文献   

2.
Genetically improved transgenic fish possess many beneficial economic traits; however, the commercial aquaculture of transgenic fish has not been performed till date. One of the major reasons for this is the possible ecological risk associated with the escape or release of the transgenic fish. Using a growth hormone transgenic fish with rapid growth characteristics as a subject, this paper analyzes the following: the essence of the potential ecological risks posed by transgenic fish; ecological risk in the current situation due to transgenic fish via one-factor phenotypic and fitness analysis, and mathematical model deduction. Then, it expounds new ideas and the latest findings using an artificially simulated ecosystem for the evaluation of the ecological risks posed by transgenic fish. Further, the study comments on the strategies and principles of controlling these ecological risks by using a triploid approach. Based on these results, we propose that ecological risk evaluation and prevention strategies are indispensable important components and should be accompanied with breeding research in order to provide enlightments for transgenic fish breeding, evaluation of the ecological risks posed by transgenic fish, and development of containment strategies against the risks. Supported by the Development Plan of the State Key Fundamental Research of China (Grant Nos. 2007CB109205 and 2007CB109206), the National Natural Science Foundation of China (Grant No. 30430540), and the ‘863’ High Technology Project (Grant No. 2006AA10Z141)  相似文献   

3.
用直接注射法生产转基因鱼   总被引:9,自引:0,他引:9  
本文报道了对鲤鱼、鲫鱼受精卵不加任何去膜处理,用显微操作器把外源基因直接注射到卵核附近,构建转基因鱼的方法。本法操作方便,孵化条件简单,成活率高。斑点杂交和Southern Blot杂交结果表明,外源基因的整合率与其它方法构建的转基因鱼的外源基因的整合率相近。从1988年至今,本组运用这个方法生产转基因鲤鱼、鲫鱼一万余尾。  相似文献   

4.
精子作载体的转基因鱼研究   总被引:6,自引:0,他引:6  
李晶  李莹 《生物技术》1994,4(3):20-22
本文报道了以精子为载体将美洲拟蝶抗冻蛋白基因导入罗非鱼卵,构建转基因鱼的方法,此法简单易行。斑点杂文和SouthernBlot杂交结果表明,外源基因的整合率为18.1%,与其它方法构建转基因鱼的外源基因整合率相近。  相似文献   

5.
我国转基因鱼研制的历史回顾与展望   总被引:1,自引:0,他引:1  
中国自从诞生了首例转基因鱼以来,在后续30多年里取得了一系列重要研究进展。全球范围的转基因鱼研究包括多种养殖鱼类,目标性状涉及快速生长、抗病抗逆和品质改良。现在已经初步建成转基因鱼育种技术体系和安全评估体系,为转基因鱼产业化奠定了重要基础。本文以转基因黄河鲤育种研究为主线,简要回顾了转基因鱼研究的发展历程,并对转基因鱼育种面临的问题和发展前景进行了分析和展望。  相似文献   

6.
转基因鱼离市场还有多远   总被引:33,自引:2,他引:31  
根据本实验室转基因鱼育种研究的现状,讨论了“转基因鱼离市场还有多远”这一令人关注的问题。转草鱼生长激素重组基因(CAgcGH)鲤鱼具有明显的快速生长和饵料节省效应,鱼体有高干物质含量及高蛋白低脂肪的生化组成,是一种优质食用鱼。把一种鱼的基因转移到另一种鱼,即转“全鱼”基因后,受体鱼基因组改变的程度,仅相当于两种杂交的10万分之一左右,因而它对水生态系统的胁迫作用轻微的,充其量可视为与相应杂交鱼实质  相似文献   

7.
转基因鱼的研究进展与商业化前景   总被引:3,自引:0,他引:3  
Ye X  Tian YY  Gao FY 《遗传》2011,33(5):494-503
转基因技术为鱼类育种开辟了新的途径。目前已培育出转生长激素基因鲤、鲑和罗非鱼,转荧光蛋白基因斑马鱼与唐鱼等可稳定遗传的转基因鱼品系,其中快长转生长激素基因鱼的获得对于提高水产养殖的产量与养殖效益具有十分重要的意义。文章简要综述了转基因鱼应用研究的成就、相关技术及生态安全方面的研究进展。显微注射仍是目前基因转植的常用方法,应用转座酶或巨核酸酶介导的转基因新技术可提高基因转植效率与整合率。转基因元件的选择应尽量考虑"全鱼"基因或"自源"基因,以减少转基因鱼食用安全方面的顾虑同时也有利于转植基因的表达与生理功效的发挥。生态安全是转基因鱼商用化面临的最大问题。虽然有研究显示转基因鱼与传统的选育鱼类相比适合度较差,但由于环境与基因型间的相互作用,根据实验室获得的转基因鱼对生态影响的结果,难以预测转基因鱼一旦逃逸会对自然水生态环境产生怎样的影响。因此应建立高度自然化的环境以获得可靠的数据客观评价生态风险,有效的物理拦截、不育化处理等生物学控制策略仍是保证转基因鱼安全应用的关键措施。  相似文献   

8.
本文综述了鱼类转基因研究的意义、鱼类基因转移研究的特点、转基因鱼的构建及检测技术、我国鱼类转基因研究的进展和鱼类基因转移研究中存在的主要问题。  相似文献   

9.
The protocol described in this paper offers a simple and rapid method for PCR analysis of transgenes using a restricted amount of fin tissue from small-sized transgenic fish. A simple preparation of fin lysate using a buffer containing a low concentration of an ionic detergent, SDS (0.01%), followed by neutralization with a second buffer containing higher concentrations of non-ionic detergents NP40 (2%) and Tween 20 (2%) consistently provides a reliable quantity of high-quality DNA template for PCR amplification of transgenes. Based on this protocol, transgenic fish can be clearly distinguished from non-transgenic fish using PCR in a rapid and reproducible manner. Tedious DNA purifications are avoided while fidelity of amplification and efficient identification of transgenic fish are maintained.  相似文献   

10.
转基因鱼工作的开展被用于水产科学基础与应用研究的各个领域。应用方面的一项重要研究就是利用转生长激素基因来提高鱼的增长速度。需要解决两个问题:一是转基因鱼所使用的基因元件;二是外源基因的高整和率与高表达。已有许多报道认为:不同种动物的生长激素不一定相互促进生长。我们通过显微注射,将鲤鱼金属硫蛋白启动子(cMT)与大马哈鱼生长激素基因(sGH)的融合基因(cMTsGH)导入鲤鱼单细胞后期的早期胚胎,构建了全鱼转基因鲤鱼。通过斑点杂交、Southernblot结合PCRSouthernblot,对外源sGH的整和进行了精确的检测和分析。实验选取性成熟鲤鱼,收集卵子和精子,湿法受精获得受精卵。经过基因注射,孵化后的鱼苗放入水族箱。待鱼苗平游,提取总DNA进行检测。以PstI酶切质粒pcMTcGH(Fig.4)分离3.4KbsGH片段,用随机引物标记,作为杂交探针。同时,设计并合成sGH基因的PCR特异引物。Fig.1的斑点杂交结果与Fig.2的PCRSouthern结果相比较(Table1),说明斑点杂交存在着高的假阳性。而PCRSouthern将PCR的快速、方便与Southern的准确性相结合,排除了P  相似文献   

11.
Compared to mammals, fishes offer easier transgenic technology because each female produces hundreds of eggs, the manipulated embryos do not need to be incubated inside the mother, and the probability of their harboring human-related pathogens is lower. In the last 15 years, traditional methods using injections of fertilized fish eggs and strong viral promoters have resulted in the generation of many transgenic fish species; however, they showed random genome integration with some mosaicism and episomic expression. The use of inducible gene systems that control temporal and tissue expression and of gene-targeting methodologies based on homologous recombination is desirable to control the expression, efficiency of insertion, and locus of incorporation of transgenes into fish genomes. A variety of systems developed for mammals are now available to be tested in fishes. The use of such systems would require further development of stem cell or nuclear transplant technologies in fish. Most of that work remains to be explored.  相似文献   

12.
Green fluorescent protein (GFP) transgenic fish and their applications   总被引:11,自引:0,他引:11  
Gong Z  Ju B  Wan H 《Genetica》2001,111(1-3):213-225
The coupling of the GFP reporter system with the optical clarity of embryogenesis in model fish such as zebrafish and medaka is beginning to change the picture of transgenic fish study. Since the advent of first GFP transgenic fish in 1995, GFP transgenic fish technology have been quickly employed in many areas such as analyses of gene expression patterns and tissue/organ development, dissection of promoters/enhancers, cell lineage and axonal pathfinding, cellular localization of protein products, chimeric embryo and nuclear transplantation, cell sorting, etc. The GFP transgenic fish also have the potentials in analysis of upstream regulatory factors, mutagenesis screening and characterization, and promoter/enhancer trap. Our own studies indicate that GFP transgenic fish may become a new source of novel variety of ornamental fish. Efforts are also being made in our laboratory to turn GFP transgenic fish into biomonitoring organisms for surveillance of environmental pollution.  相似文献   

13.
Although the transgenic technology has been successfully used to generate fluorescent zebrafish and medaka for ornamental purposes, the practicability of the technology has not been demonstrated in other ornamental fish species. In the present study, we have tested the transgenic technology in a bona fide ornamental fish species, the white skirt tetra (Gymnocorymbus ternetzi). First, its embryonic development was briefly described. Second, we successfully introduced an rfp (red fluorescent protein) gene construct driven by a strong muscle-specific mylz2 promoter from the zebrafish into the white skirt tetra and demonstrated muscle-specific expression of the RFP reporter protein. Importantly, the vivid red fluorescent color was prominently visible in adult transgenic founders under the normal daylight, like the currently marketed red fluorescent transgenic zebrafish. Thus, our current study demonstrated the feasibility of using the well-characterized zebrafish mylz2 promoters to produce useful fluorescent ornamental fish in other fish species by the transgenic technology.  相似文献   

14.
Levy  J. A.  Marins  L. F.  Sanchez  A. 《Hydrobiologia》2000,420(1):91-94
The gene transfer technique, transgenesis, has permitted the transfer of genes from one organism to another to create new lineages of organisms with improvement in traits important to aquaculture. Genetically modified organisms (GMOs), therefore, hold promise for producing genetic improvements, such as enhanced growth rate, increased production and efficiency, disease resistance and expanded ecological ranges. The basic procedure to generate transgenic fish for aquaculture includes: (1) design and construction of transgenic DNA; (2) transfer of the gene construct into fish germ cells; (3) screening for transgenic fish; (4) determination of transgene expression and phenotype; (5) study of inheritance; and (6) selection of stable lines of transgenics.GMOs offer economic benefits, but also pose environmental threats. Optimising the mix of benefits and risks is of fundamental importance. The potential economic benefits of transgenic technology to aquaculture are obvious. Transgenic fish production has the goal of producing food for human consumption; thus the design of genetic constructs must take into consideration the potential risks to consumer health, as well as marketing strategies and product acceptance in the market.  相似文献   

15.
ES cells provide a promising tool for the generation of transgenic animals with site-directed mutations. When ES cells colonize germ cells in chimeras, transgenic animals with modified phenotypes are generated and used either for functional genomics studies or for improving productivity in commercial settings. Although the ES cell approach has been limited to mice, there is strong interest for developing the technology in fish. We describe the step-by-step procedure for developing ES cells in fish. Key aspects include avoiding cell differentiation, specific in vitro traits of pluripotency, and, most importantly, testing for production of chimeric animals as the main evidence of pluripotency. The entire process focuses on two model species, zebrafish and medaka, in which most work has been done. The achievements attained in these species, as well as their applicability to other commercial fish, are discussed. Because of the difficulties relating to germ line competence, mostly of long-term fish ES cells, alternative cell-based approaches such as primordial germ cells and nuclear transfer need to be considered. Although progress to date has been slow, there are promising achievements in homologous recombination and alternative avenues yet to be explored that can bring ES technology in fish to fruition.  相似文献   

16.
A recombinant plasmid containing the Rous sarcoma virus-long terminal repeat (RSV-LTR) promoter linked to rainbow trout (Salmo gairdneri) growth hormone (GH) cDNA was microinjected into fertilized carp eggs. Genomic DNA extracted from pectoral fin of individual presumptive transgenic fish was analyzed by dot blot and Southern blot hybridization, using the RSV-LTR and/or the GH cDNA sequences as probes. Out of 365 presumptive transgenic fish analyzed, 20 individuals were found to contain pRSV-rtGH-cDNA sequence in the genomic DNA. Expression of the trout GH polypeptide was detected by immunobinding assay in the red blood cells of nine transgenic fish tested. The level of expression, however, varied among the transgenics and could not be correlated with exogenous DNA copy number. Although there was considerable variation in the sizes of the transgenic fish, those microinjected during the one-cell stage were (P less than 0.05) 22% larger, on the average, than their sibling controls. A randomly selected fraction of the progeny derived from crosses between transgenic males and non-transgenic females inherited the foreign DNA. These transgenic progeny grew faster (P less than 0.05) than their non-transgenic siblings.  相似文献   

17.
Targeted gene expression by the Gal4-UAS system in zebrafish   总被引:2,自引:0,他引:2  
Targeted gene expression by the Gal4-UAS system is a powerful methodology for analyzing function of genes and cells in vivo and has been extensively used in genetic studies in Drosophila . On the other hand, the Gal4-UAS system had not been applied effectively to vertebrate systems for a long time mainly due to the lack of an efficient transgenesis method. Recently, a highly efficient transgenesis method using the medaka fish Tol2 transposable element was developed in zebrafish. Taking advantage of the Tol2 transposon system, we and other groups developed the Gal4 gene trap and enhancer trap methods and established various transgenic fish expressing Gal4 in specific cells. By crossing such Gal4 lines with transgenic fish lines harboring various reporter genes and effector genes downstream of UAS (upstream activating sequence), specific cells can be visualized and manipulated in vivo by targeted gene expression. Thus, the Gal4 gene trap and enhancer trap approaches together with various UAS lines should be important tools for investigating roles of genes and cells in vertebrates.  相似文献   

18.
It has been more than 20 years since the first batch of transgenic fish was produced. Five stable germ-line transmitted growth hormone (GH) transgenic fish lines have been generated. This paper reviews the mechanisms of integration and gene targeting of the transgene, as well as the viability, reproduction and transgenic approaches for the reproductive containment of GH-transgenic fish. Further, we propose that it should be necessary to do the following studies, in particularly, of the breeding of transgeni...  相似文献   

19.
Transgenic fish carrying a reconstructed mouse tyrosinase gene, mg-Tyrs-J, were produced by microinjecting the gene into the oocyte nucleus of an orange-colored variant of medaka (Oryzias latipes). Of 64 oocytes microinjected and subsequently inseminated, 13 embryos developed normally beyond hatching and three of them exhibited brown skin pigmentation in the adult as was commonly observed in the wild type of this species. Light and electron microscopic examination disclosed a ubiquitous distribution of typical melanophores in the skin of these transgenic fish. Judging from their population density and distribution pattern, it was presumed that melanogenesis in these fish was elicited in amelanotic melanophores that resided in the skin of the orange-colored fish of this variant. Immunofluorescence with use of the anti-mouse tyrosinase antiserum lacking reactivity to medaka tyrosinase clearly disclosed that the gene introduced was expressed in the melanophores of transgenic fish. Crosses of female transgenic fish and males from an orange-colored variant yielded offspring exhibiting wild-type or orange-colored pigmentation in a ratio of 1:1, thus implying that mg-Tyrs-J integrated into the medaka genome behaves like a dominant gene. Little melanogenesis was observed in xanthophores, leucophores and iridophores in transgenic fish, suggesting possible specificity in recognition of teleostean cell types (i.e., melanophores) by the regulatory region of the mouse tyrosinase gene.  相似文献   

20.
Fish Growth in Marine Culture Systems: A Challenge for Biotechnology   总被引:1,自引:0,他引:1  
Aquaculture production is constrained largely by the growth efficiency of the species being produced. Nutritional approaches have played an important part in improving this situation, but, it is argued, the room for further improvement using such established techniques is limited. Alternative ways of improving fish production by utilizing recent biotechnological advances are explored and assessed as to their potential for commercialization in the near future. Transgenic technologies promise a revolution in aquaculture, but it is considered that consumer resistance may delay the use of transgenic fish for food production. An alternative approach could be the breeding of transgenic fodder plants without the amino acid deficiencies of existing alternatives to fish meal in aquaculture diets. The use of probiotics could reduce antibiotic use on fish farms while they might also provide the basis for ``smart' diets, tailored to specific purposes by the inclusion of microorganisms. The selection and genetic engineering of nitrifying and denitrifying bacteria could also pave the way for fully enclosed, recirculating marine culture systems, which would allow control of the environmental variables that currently restrain marine fish culture. Received August 10, 1998; accepted October 8, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号