首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved.  相似文献   

3.
4.
This study provides new perspectives of the unique aspects of platelet-derived growth factor beta-receptor (PDGFR-beta) signaling and biological responses through the establishment of a mutant mouse strain in which two loxP sequences were inserted into the introns of PDGFR-beta genome sequences. Isolation of skin fibroblasts from the mutant mice and Cre recombinase transfection in vitro induced PDGFR-beta gene deletion (PDGFR-betaDelta/Delta). The resultant depletion of the PDGFR-beta protein significantly attenuated platelet-derived growth factor (PDGF)-BB-induced cell migration, proliferation, and protection from H2O2-induced apoptosis of the cultured PDGFR-betaDelta/Delta dermal fibroblasts. PDGF-AA and fetal bovine serum were mitogenic and anti-apoptotic but were unable to induce the migration in PDGFR-beta Delta/Delta fibroblasts. Concerning the PDGF signaling, PDGF-BB-induced phosphorylation of Akt, ERK1/2, and JNK, but not p38, decreased in PDGFR-betaDelta/Delta fibroblasts, but PDGF-AA-induced signaling was not altered. Overexpression of the phospholipid phosphatases, SHIP2 and/or PTEN, inhibited PDGF-BB-induced phosphorylation of Akt and ERK1/2 in PDGFR-betaDelta/Delta fibroblasts but did not affect that of JNK and p38. These results indicate that disruption of distinct PDGFR-beta signaling pathways in PDGFR-betaDelta/Delta dermal fibroblasts impaired their proliferation and survival, but completely inhibits migratory response, and that PDGF-BB-induced phosphorylation of Akt and ERK1/2 possibly mediated by PDGFR-alpha is regulated, at least in part, by the lipid phosphatases SHIP2 and/or PTEN. Thus, the PDGFR-beta function on dermal fibroblasts appears to be critical in PDGF-BB action for skin wound healing and is clearly distinctive from that of PDGFR-alpha in the ligand-induced biological responses and the underlying properties of cellular signaling.  相似文献   

5.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

6.
Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV'' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.  相似文献   

7.
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13‐dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP‐9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation‐induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu‐induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)‐inhibited PDBu‐induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP‐9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu‐induced podosomes by influencing the recruitment of PKCζ and MMP‐9 to podosomes. J. Cell. Physiol. 228: 416–427, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Zhou JH  Yu DV  Cheng J  Shapiro DJ 《Steroids》2007,72(11-12):765-777
Tamoxifen (Tam), and its active metabolite, 4-hydroxytamoxifen (OHT), compete with estrogens for binding to the estrogen receptor (ER). Tam and OHT can also induce ER-dependent apoptosis of cancer cells. 10-100nM OHT induces ER-dependent apoptosis in approximately 3 days. Using HeLaER6 cells, we examined the role of OHT activation of signal transduction pathways in OHT-ER-mediated apoptosis. OHT-ER activated the p38, JNK and ERK1/2 pathways. Inhibition of p38 activation with SB203580, or RNAi-knockdown of p38alpha, moderately reduced OHT-ER mediated cell death. A JNK inhibitor partly reduced cell death. Surprisingly, the MEK1/2 inhibitor, PD98059, completely blocked OHT-ER induced apoptosis. EGF, an ERK1/2 activator, enhanced OHT-induced apoptosis. OHT induced a delayed and persistent phosphorylation of ERK1/2 that persisted for >80h. Addition of PD98059 as late as 24h after OHT largely blocked OHT-ER mediated apoptosis. The antagonist, ICI 182,780, blocked both the long-term OHT-mediated phosphorylation of ERK1/2 and OHT-induced apoptosis. Our data suggests that the p38 and JNK pathways, which often play a central role in apoptosis, have only a limited role in OHT-ER-mediated cell death. Although rapid activation of the ERK1/2 pathway is often associated with cell growth, persistent activation of the ERK1/2 pathway is essential for OHT-ER induced cell death.  相似文献   

10.
11.
Previous studies indicated that antigen receptor (TcR) stimulation of mature T cells induced rapid generation of reactive oxygen species (ROS). The goal of the current study was to examine the role(s) of ROS in TcR signal transduction, with a focus upon the redox-sensitive MAPK family. TcR cross-linking of primary human T blasts and Jurkat human T cells rapidly activated the ERK, JNK, p38 and Akt kinases within minutes, and was temporally associated with TcR-stimulated production of hydrogen peroxide (H(2)O(2)). TcR-induced activation of ERK was selectively augmented and sustained in the presence of pharmacologic antioxidants that can quench or inhibit H(2)O(2) production (NAC, MnTBAP and Ebselen, but not DPI), while activation of JNK and Akt were largely unaffected. This was paralleled by concurrent changes in MEK1/2 phosphorylation, suggesting that ROS acted upstream of MEK-ERK activation. Molecular targeting of H(2)O(2) by overexpression of peroxiredoxin II, a thioredoxin dependent peroxidase, also increased and sustained ERK and MEK activation upon TcR cross-linking. Enhancement of ERK phosphorylation by antioxidants correlated with increased and sustained serine phosphorylation of the src-family kinase lck, a known ERK substrate. Thus, the data suggest that TcR-stimulated production of hydrogen peroxide negatively feeds back to dampen antigen-stimulated ERK activation and this redox-dependent regulation may serve to modulate key steps in TcR signaling.  相似文献   

12.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

13.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

14.
Mouse kidney proximal tubular epithelial (MK-PT) cells die by apoptosis over 7-10 days when deprived of all survival factors. We show here that withdrawal of all survival factors from MK-PT cells is associated with a progressive increase in the activity of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and a progressive decrease in phosphorylated Akt, a kinase critical to cell survival. Pharmacological inhibition of MEK1/2, the immediate upstream kinase for ERK1/2, not only prevented the decrease in phosphorylated Akt, but also prolonged MK-PT cell survival. Inhibition of ERK1/2, by itself, in the absence of any other known survival factors, was as potent as epidermal growth factor in maintaining MK-PT cell viability. ERK1/2 co-immunoprecipitated with Akt in a multimolecular assembly of signaling molecules, containing at a minimum ERK1/2, Akt, Rsk, and 3-phosphoinositide dependent kinase 1 (PDK1). We hypothesize that the kinase Rsk, whose activation requires phosphorylation by both ERK1/2 and PDK1, acts as a bridge bringing ERK1/2 into proximity with PDK1-associated Akt. Although a number of interactions between the Raf-MEK-ERK and PI3K-Akt signaling pathways have been described, our results are the first to show modulation of Akt activity by signaling events originating with ERK1/2. Spontaneous activation of ERK1/2 occurs via MEK1/2 and appears to depend on oxidant stress, accompanying induction of the default pathway of apoptosis. Together, these data suggest that the spontaneous activation of ERK1/2, in the absence of known extracellular stimuli, represents a previously unrecognized major regulatory pathway determining the fate of cells destined to die by the default pathway of apoptosis.  相似文献   

15.
Interleukin 6 (IL-6) is an independent predictor of type 2 diabetes and cardiovascular disease and is correlated with insulin resistance. Insulin stimulates nitric oxide (NO) production through the IRS-1/PI3-kinase/Akt/eNOS pathway (where IRS-1 is insulin receptor substrate 1, PI3-kinase is phosphatidylinositol 3-kinase, and eNOS is endothelial NO synthase). We asked if IL-6 affects insulin vasodilator action both in human umbilical vein endothelial cells (HUVEC) and in the aortas of C57BL/6J mice and whether this inhibitory effect was caused by increased Ser phosphorylation of IRS-1. We observed that IL-6 increased IRS-1 phosphorylation at Ser(312) and Ser(616); these effects were paralleled by increased Jun N-terminal protein kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and reversed by JNK and ERK1/2 inhibition. In addition, IL-6 treatment resulted in impaired IRS-1 phosphorylation at Tyr(612), a site essential for engaging PI3-kinase. Furthermore, IL-6 treatment reduced insulin-stimulated phosphorylation of eNOS at the stimulatory Ser(1177) site and impaired insulin-stimulated eNOS dephosphorylation at the inhibitory Thr(495) site. Insulin-stimulated eNOS activation and NO production were also inhibited by IL-6; these effects were reversed by inhibition of JNK and ERK1/2. Treatment of C57BL/6J mice with IL-6 resulted in impaired insulin-dependent activation of the Akt/eNOS pathway in the aorta as a result of JNK and ERK1/2 activation. Our data suggest that IL-6 impairs the vasodilator effects of insulin that are mediated by the IRS-1/PI3-kinase/Akt/eNOS pathway through activation of JNK and ERK1/2.  相似文献   

16.
In isosmotic conditions, insulin stimulation of PI 3-K/Akt and p38 MAPK pathways in skeletal muscle inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity induced by the ERK1,2 MAPK pathway. Whether these signaling cascades contribute to NKCC regulation during osmotic challenge is unknown. Increasing osmolarity by 20 mosM with either glucose or mannitol induced NKCC-mediated (86)Rb uptake and water transport into rat soleus and plantaris skeletal muscle in vitro. This NKCC activity restored intracellular water. In contrast to mannitol, hyperosmolar glucose increased ERK1,2 and p38 MAPK phosphorylation. Glucose, but not mannitol, impaired insulin-stimulated phosphorylation of Akt and p38 MAPK in the plantaris and soleus muscles, respectively. Hyperosmolarity-induced NKCC activation was insensitive to insulin action and pharmacological inhibition of ERK1,2 and p38 MAPK pathways. Paradoxically, cAMP-producing agents, which stimulate NKCC activity in isosmotic conditions, suppressed hyperosmolar glucose- and mannitol-induced NKCC activity and prevented restoration of muscle cell volume in hyperosmotic media. These results indicate that NKCC activity helps restore muscle cell volume during hyperglycemia. Moreover, hyperosmolarity activates NKCC regulatory pathways that are insensitive to insulin inhibition.  相似文献   

17.
In vitro experiments have shown that the establishment of cell-cell contacts in intestinal epithelial cell cultures is a critical step in initiating ERK inhibition, cell cycle arrest, and induction of the differentiation process. Herein, we determined the mechanisms through which E-cadherin-mediated cell-cell contacts modulate the ERK pathway in intestinal epithelial cells. We report that: (1) removal of calcium from the culture medium of newly confluent Caco-2/15 cells (30 min, 4 mM EGTA) results in the disruption of both adherens and tight junctions and clearly decreases Akt phosphorylation while increasing MEK and ERK activities. Akt, MEK, and ERK activation levels return to control levels 60 min after calcium restoration; (2) the use of E-cadherin blocking antibodies efficiently prevents Akt phosphorylation and MEK-ERK inhibition after 70 min of calcium restoration; (3) using the PI3K inhibitor LY294002 (15 microM) in calcium switch experiments, we demonstrate that the assembly of adherens junctions activates Akt activity and triggers the inhibition of ERK1/2 activities in a PI3K-dependent manner; (4) adenoviral infection of confluent Caco-2/15 cells with a constitutively active mutant of Akt1 strongly represses ERK1/2 activities; (5) inhibition of PI3K abolishes Akt activity but leads to a rapid and sustained activation of the MEK-ERK1/2 in confluent differentiating Caco-2/15 cells, but not in undifferentiated growing Caco-2/15 cells. Our data suggest that E-cadherin engagement leads to MEK/ERK inhibition in a PI3K/Akt-dependent pathway. This mechanism may account for the role of E-cadherin in proliferation/differentiation transition along the crypt-villus axis of the human intestinal epithelium.  相似文献   

18.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

19.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

20.
Objectives:  Activation of SMAD-independent p44/42 MAPK (ERK1/2) signalling by TGFβ has been recently reported in various cell types. However, the mechanisms for the linkage between the SMAD-dependent and -independent pathways are poorly understood. In this study, we investigated whether TGF-β activates the ERK pathway and how TGFβ communicates with the MAP kinase signals induced by a mitogen, in human myeloid leukaemia cells.
Materials and methods and results:  TGFβ dramatically suppressed proliferation of MV4–11 and TF-1 cells without detectable phosphorylation of ERK1/2 and MEK1/2 for the duration of 48 h, as detected by MTT assay and Western blot analysis, respectively. In contrast, GM-CSF induced rapid and transient phosphorylation of MEK1/2 and ERK1/2 and up-regulated cell proliferation. Both GM-CSF-induced ERK1/2 activation and cell proliferation were significantly inhibited by TGFβ. GM-CSF also induced transient phosphorylation of the p85 subunit of PI3-kinase. Corresponding to this change, phosphorylated p85 was found to bind to the GM-CSF receptor-α subunit, as detected by immunoprecipitation and Western blot analysis. PD98059, a selective inhibitor of MEK, blocked GM-CSF-induced phosphorylation of MEK and ERK but not p85. However, TGFβ and LY294002, a potent inhibitor of PI3-kinase, significantly inhibited phosphorylation of both p85 and ERK1/2.
Conclusions:  These studies thus indicate that TGFβ does not activate the ERK pathway but turns off the GM-CSF-induced ERK signal via inhibition of the PI3-kinase-Akt pathway, in these human laeukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号