首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monomeric heme octapeptide from cytochrome c, microperoxidase-8, (MP-8), coordinates CN- with log K = 7.55 +/- 0.04 at 25 degrees C in 20% (v/v) aqueous methanol. Log K values are independent of pH between 6 and 9. A spectrophotometric titration of cyanoMP-8 between pH 5.5 and 13.8 gave a single pKa greater than or equal to 13.5 ascribed to ionization of the proximal His ligand. A study of the kinetics of the reaction of MP-8 with cyanide between pH 5.5 and 12, at 25 degrees C and mu = 0.1, indicates that formation of cyanoMP-8 occurs via three routes: attack of CN- on Fe(III) (k1 = 6.0 +/- 0.3 X 10(5) M-1 sec-1); attack of HCN on Fe(III) (k2 = 4.8 +/- 2.0 X 10(3) M-1 sec-1), followed by deprotonation and isomerization to form the C-bound species; and displacement of OH- by CN- when the proximal His ligand is ionized (k5 = 1.8 +/- 0.1 X 10(5) M-1 sec-1). These results are compared with available data for the reaction of cyanide with aquocobalamin and with various hemoproteins.  相似文献   

2.
Binding of aquo-, cyano-, or azidocobalamin (Cbl.OH(2), Cbl.CN, and Cbl.N(3), respectively) to the recombinant human transcobalamin (TC) and haptocorrin from human plasma was investigated via stopped-flow spectroscopy. Association of cobalamins with haptocorrin always proceeded in one step. TC, however, displayed a certain selectivity for the ligands: Cbl.CN or Cbl.N(3) bound in one step with k(+1) = 1 x 10(8) M(-1) s(-1) (20 degrees C), whereas binding of Cbl.OH(2) under the same conditions occurred in two steps with k(+1) = 3 x 10( 7) M(-1) s(-1) (E(a) = 30 kJ/mol) and k(+2) = 0.02 s(-1) (E(a) = 120 kJ/mol). The second step of Cbl.OH(2) binding was interpreted as a transformation of the initial "open" intermediate TC.Cbl.OH(2) to the "closed" conformation TC(Cbl) with displaced water. The backward transition from the closed to the open conformation was the reason for the identical rate-limiting steps during substitution of H(2)O in TC.Cbl.OH(2) for cyanide or azide according to the reaction TC(Cbl) --> TC.Cbl.OH(2) + CN(-)/N(3)(-). The cyano and azido forms of holo-TC which were produced behaved as the open proteins. Different conformations of holo-TC, determined by the nature of the active group in the bound Cbl, may direct transportation of cobalamins in the organism.  相似文献   

3.
The effect of exoglycosidase, N-glycanase, trypsin and chymotrypsin was studied on the binding capacity and physicochemical properties of intrinsic factor and of haptocorrin using Superose 6 gel filtration. Intrinsic factor was purified as recently described by us. Haptocorrin was purified 6000-fold from human saliva using thermolabile affinity chromatography and high-performance cationic exchange chromatography with a specific activity of 20.6 nmol of cobalamin (Cbl) per mg protein and a yield of 44.7%. Exoglycosidases provoked a decrease of 54.3 and 78.2% of the Cbl binding capacity of haptocorrin and intrinsic factor, respectively. The sequential incubation of haptocorrin and intrinsic factor wit exoglycosidases and proteinases provoked a decrease of, respectively, 100 and 92.7% of their Cbl binding capacity, whereas the incubation with proteinase decreased the Cbl binding capacity of, respectively, 67.9 and 7.9%. The result of the incubation of [3H]intrinsic factor or [3H]haptocorrin with chymotrypsin and trypsin gave, respectively, no change in the elution position and a shift corresponding to a decrease of 50% of the estimated molecular mass. The estimated molecular mass of Cbl-intrinsic factor and of Cbl-haptocorrin decreased, respectively, to 57.1 kDa and to 88.1 kDa after incubation with exoglycosidases. It was concluded that (1) the carbohydrate core of intrinsic factor protects the whole protein whereas the carbohydrate core of haptocorrin protects only half part of the protein and (2) the carbohydrates are implicated in the formation of the cobalamin binding site of haptocorrin and intrinsic factor.  相似文献   

4.
Binding of neopentylcobalamin and benzylcobalamin to the apoprotein of a haptocorrin from chicken serum has been demonstrated spectrophotometrically. The spectra of the protein-bound cobalamins strongly resemble those of base-on alkylcobalamins and show that when unbound these sterically hindered alkylcobalamins are only approximately 75% (benzyl) and 40% (neopentyl) base-on, at neutral pH and at 5 degrees C. The haptocorrin was found to stabilize the spontaneous thermal decomposition of the neutral species of benzylcobalamin and neopentylcobalamin by 470-fold (3.6 kcal) and 166-fold (3.0 kcal), respectively, relative to the protein-free species. After correction of the activation parameters for the thermal decomposition of the protein-free, neutral alkylcobalamins for the relative proportions of base-on and base-off species, the haptocorrin was found to stabilize the base-on species of both alkylcobalamins by 275- to 1400-fold (approximately 3.3 to 4.3 kcal). From the temperature dependence of the decomposition reactions, the enthalpies of activation are found to be essentially identical for the protein-free and protein-bound species of either cobalamin. Thus, stabilization of the thermal decomposition of these sterically hindered alkylcobalamins by haptocorrin is entirely due to entropic factors.  相似文献   

5.
To probe the mechanism of the reversible DNA phosphodiester bond cleavage and religation mechanism of the type I topoisomerase from vaccinia virus, we have synthesized DNA substrates carrying a single nonbridging Rp- or Sp-phosphorothioate (Ps) modification at the scissile phosphodiester (Pd) bond. Analysis of the stereochemical outcome of the net cleavage and rejoining reaction established that the reaction proceeds with retention of configuration, as expected for a double-displacement mechanism. Single-turnover kinetic studies on irreversible strand cleavage using 18/24 mer suicide substrates showed thio effects (k(Pd)/k(Ps)) of 340- and 30-fold for the Rp-Ps and Sp-Ps stereoisomers, respectively, but approximately 10-fold smaller thio effects for the reverse single-turnover religation reaction (Rp-Ps = 30 and Sp-Ps = 3). As compared to the smaller suicide cleavage substrates, approach-to-equilibrium cleavage studies using 32/32 mer substrates showed 7-9-fold smaller thio effects on cleavage, similar effects on religation, and the same ratio of the Rp to Sp thio effect as the suicide cleavage reaction ( approximately 10). In general, thio effects of 2.4-7.2-fold on the cleavage equilibrium are observed for the wild-type and H265A enzymes, suggesting differences in the interactions of the enzyme with the nonbridging sulfur in the noncovalent and covalent complexes. Studies of the cleavage, religation, and approach-to-equilibrium reactions catalyzed by the H265A active site mutant revealed a stereoselective, 11-fold decrease in the Rp-thio effect on cleavage and religation as compared to the wild-type enzyme. This result suggests that His-265 interacts with the nonbridging pro-Rp oxygen in the transition state for cleavage and religation, consistent with the arrangement of this conserved residue in the crystal structure of the human topoisomerase-DNA complex. In general, the greatest effect of thio substitution and the H265A mutation is to destabilize the transition state, with smaller effects on substrate binding. The interaction of His-265 with the pro-Rp nonbridging oxygen is inconsistent with the proposal that this conserved residue acts as a general acid in the strand cleavage reaction.  相似文献   

6.
GDP-mannose hydrolase (GDPMH) catalyzes the hydrolysis of GDP-alpha-d-sugars by nucleophilic substitution with inversion at the anomeric C1 atom of the sugar, with general base catalysis by H124. Three lines of evidence indicate a mechanism with dissociative character. First, in the 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP.Tris(+) complex [Gabelli, S. B., et al. (2004) Structure 12, 927-935], the GDP leaving group interacts with five catalytic components: R37, Y103, R52, R65, and the essential Mg(2+). As determined by the effects of site-specific mutants on k(cat), these components contribute factors of 24-, 100-, 309-, 24-, and >/=10(5)-fold, respectively, to catalysis. Both R37 and Y103 bind the beta-phosphate of GDP and are only 5.0 A apart. Accordingly, the R37Q/Y103F double mutant exhibits partially additive effects of the two single mutants on k(cat), indicating cooperativity of R37 and Y103 in promoting catalysis, and antagonistic effects on K(m). Second, the conserved residue, D22, is positioned to accept a hydrogen bond from the C2-OH group of the sugar undergoing substitution at C1, as was shown by modeling an alpha-d-mannosyl group into the sugar binding site. The D22A and D22N mutations decreased k(cat) by factors of 10(2.1) and 10(2.6), respectively, for the hydrolysis of GDP-alpha-d-mannose, and showed smaller effects on K(m), suggesting that the D22 anion stabilizes a cationic oxocarbenium transition state. Third, the fluorinated substrate, GDP-2F-alpha-d-mannose, for which a cationic oxocarbenium transition state would be destabilized by electron withdrawal, exhibited a 16-fold decrease in k(cat) and a smaller, 2.5-fold increase in K(m). The D22A and D22N mutations further decreased the k(cat) with GDP-2F-alpha-d-mannose to values similar to those found with GDP-alpha-d-mannose, and decreased the K(m) of the fluorinated substrate. The choice of histidine as the general base over glutamate, the preferred base in other Nudix enzymes, is not due to the greater basicity of histidine, since the pK(a) of E124 in the active complex (7.7) exceeded that of H124 (6.7), and the H124E mutation showed a 10(2.2)-fold decrease in k(cat) and a 4.0-fold increase in K(m) at pH 9.3. Similarly, the catalytic triad detected in the X-ray structure (H124- - -Y127- - -P120) is unnecessary for orienting H124, since the Y127F mutation had only 2-fold effects on k(cat) and K(m) with either H124 or E124 as the general base. Hence, a neutral histidine rather than an anionic glutamate may be necessary to preserve electroneutrality in the active complex.  相似文献   

7.
Rate constants for the reactions of aquocobalamin and aquamethylcobaloxime with a series of uncharged sulfur-coordinating ligands were measured in the solvents water and 50 vol% dioxane-water. For both complexes in both solvent systems a linear free energy relationship was found with unit slope, indicating a dissociative mode of activation. With the help of solubility measurements a complete quantitative analysis of solvent effects on the reaction profile could be made. For both cobalt complexes the solvent effects on the reaction profiles are comparable, but in the case of aquocobalamin the kinetic parameters are more influenced by steric factors and hydrogen bonding. From the quantitative analysis of the reactivity of aquocobalamin and aquamethylcobaloxime it is concluded, that for biological reactions where steric effects and/or hydrogen bonding play an important role, aquamethylcobaloxime is not a good model compound for vitamin B12.  相似文献   

8.
A vitamin B12-binding protein (haptocorrin) from chicken serum has been purified to homogeneity by photodissociative affinity chromatography and characterized by gel electrophoresis and UV-visible spectrophotometry of its aquocobalamin, hydroxocobalamin, and cyanocobalamin complexes. The haptocorrin is a glycoprotein with a molecular mass of about 70 kDa and a protein moiety of about 40 kDa. 31P NMR resonances of the haptocorrin-cobalamin complexes are relatively broad singlets (with or without proton decoupling) shifted downfield by 0.7-1.0 ppm from the position of the free cobalamin resonances. From the line width data, the relaxation of the phosphorus nucleus is found to be dominated by chemical shift anisotropy with a very minor (13%) component from dipolar interaction with the two nearest neighbor protons. The rotational correlation time of the haptocorrin at 25 degrees C is estimated to be 85 ns and the activation energy for rotational correlation 3.9 +/- 0.3 kcal mol-1. The downfield shift of the 31P resonances of cobalamins upon binding to the haptocorrin cannot be due to hydrogen bonding phosphodiester moiety or displacement of the axial base by a group on the protein. Calculations also show that the downfield shift is very unlikely to be due to dipolar deshielding of the phosphorus nucleus by the ring current of an aromatic residue of the protein. It is concluded that the downfield shift of the 31P resonance must be due to sterically induced changes in phosphodiester conformation which may, or may not, involve steric compression of the axial Co-N bond.  相似文献   

9.
Bandi S  Bowler BE 《Biochemistry》2011,50(46):10027-10040
The alkaline transition of cytochrome c involves substitution of the Met80 heme ligand of the native state with a lysine ligand from a surface Ω-loop (residues 70 to 85). The standard mechanism for the alkaline transition involves a rapid deprotonation equilibrium followed by the conformational change. However, recent work implicates multiple ionization equilibria and stable intermediates. In previous work, we showed that the kinetics of formation of a His73-heme alkaline conformer of yeast iso-1-cytochrome c requires ionization of the histidine ligand (pK(HL) ~ 6.5). Furthermore, the forward and backward rate constants, k(f) and k(b), respectively, for the conformational change are modulated by two auxiliary ionizations (pK(H1) ~ 5.5, and pK(H2) ~ 9). A possible candidate for pK(H1) is His26, which has a strongly shifted pK(a) in native cytochrome c. Here, we use the AcH73 iso-1-cytochrome c variant, which contains an H26N mutation, to test this hypothesis. pH jump experiments on the AcH73 variant show no change in k(obs) for the His73-heme alkaline transition from pH 5 to 8, suggesting that pK(H1) has disappeared. However, direct measurement of k(f) and k(b) using conformationally gated electron transfer methods shows that the pH independence of k(obs) results from coincidental compensation between the decrease in k(b) due to pK(H1) and the increase in k(f) due to pK(HL). Thus, His26 is not the source of pK(H1). The data also show that the H26N mutation enhances the dynamics of this conformational transition from pH 5 to 10, likely as a result of destabilization of the protein.  相似文献   

10.
The influence of substrate benzhydroxamic acid (BHA) and iron ligand (cyanide) on the thermodynamics and dynamics of each of the two binding sites of horseradish peroxidase (HRP) isozyme C has been investigated by 1H NMR spectroscopy. A combination of line-width analysis and saturation transfer spectroscopy has allowed the direct determination of the off-rate of substrate and ligand in the absence or presence of the other. These off-rates, together with available dissociation constants obtained by optical spectroscopy (Schonbaum, 1973), provide estimates for kon. The dissociation constant for cyanide binding to the BHA.HRP complex was also directly determined by NMR. In all cases the 1H NMR determined dynamic and thermodynamic data agree well with those values available in the literature. BHA binding leads to a 200-fold decrease in CN- affinity that arises from a factor greater than 10 decrease in koff(CN-) and greater than 2 x 10(3) decrease in kon(CN-). While a portion of the decrease in kon(CN-) can be rationalized by water coordination of the iron in the BHA.HRP complex, the additional decrease in kon(CN-) and that in koff(CN-) indicates that BHA in the binding pocket blocks the CN- ligation channel and serves as a "gate" to CN- exchange. This view is supported by observing a factor greater than 4 decrease in distal His labile proton exchange with bulk water in HRP-CN upon BHA binding. The ternary complex BHA.HRP-CN is shown to be heterogeneous. While the thermodynamics of BHA and CN- binding appear similar in the two ternary complexes, the BHA on- and off-rates for the two complexes differ by a factor of approximately 10. The two heterogeneous forms interconvert at 25 degrees C at approximately 2 x 10(2) s-1, precluding the determination of any difference in the CN- binding rates by saturation transfer. The greater lability of one of the two ternary complexes is attributed to an alternate orientation of some distal residue that blocks the substrate binding channel in one of the forms. Transferred nuclear Overhauser effects from the heme to BHA in the ternary complex reveal that the BHA substrate is in contact not only with the heme pyrrole D substituents but also with the distal His 42, indicating that the polar side chain of BHA extends well into the distal heme pocket.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Resonance Raman, optical absorption, and circular dichroism spectroscopic techniques have been used to examine the effect of the addition of inositol hexaphosphate (IHP) to a series of carp and human methemoglobin derivatives. Markers of spin equilibrium in the high-frequency region (1450-1650 cm-1) of the resonance Raman spectrum yield high/low-spin ratios consistent with direct magnetic susceptibility measurements. Changes in the low-frequency region (100-600 cm-1) of the resonance Raman spectrum appear to correlate with the quaternary structure transition. Changes in the ultraviolet absorption spectra and the circular dichroism spectra also appear to be related to the quaternary structure change. By using the resonance Raman spin markers, we find that those derivatives of carp methemoglobin which are in spin equilibrium have a larger ratio of high-spin to low-spin populations than the corresponding derivatives of human methemoglobin. Upon the addition of IHP to the methemoglobins the spin equilibrium is shifted toward a larger high-spin population. This change in equilibrium is larger for the carp protein than for the human protein. We obtain an IHP-induced change in the free energy difference between the high-spin and low-spin states of 300 cal/mol for those human methemoglobins in which a quaternary structure change occurs and 600 cal/mol for carp methemoglobins. Our data are consistent with a quaternary structure change induced by IHP in all the carp methemoglobins studied (F-, H2O, SCN-, NO2-, N3-, and CN-) and in the F-, H2O, and SCN- derivatives of the human protein but not in the NO2-, N3-, and CN- derivatives. The Fe-CN stretching mode has been identified by isotopic substitution and found to be unchanged in frequency in carp CN- metHb when the quaternary structure is changed. On the basis of our results we conclude that the protein forces at the heme due to the addition of IHP do not significantly affect the position of the iron atom with respect to the heme plane. Rather, the changes in spin equilibrium may be caused by protein-induced changes in the orientation of the proximal histidine or tertiary structure changes in the heme pocket which affect the porphyrin macrocycle. Either of these changes, or a combination thereof, leads to changes in the iron d orbital energies and concomitant changes in the spin equilibrium.  相似文献   

12.
The Cu,Co superoxide dismutase derivative, in which the native Zn(II) was replaced by Co(II), was investigated by 1H NMR spectroscopy at pH 7.0 in the presence of CN- and N-3. Addition of either anion produced large but remarkably different variations in the position of the histidine proton signals bound to the metal cluster. The resonances of the histidines bound to the copper broadened at low CN- concentrations (6 X10(-5)-16.5 X 10(-3) M KCN, in the presence of 1.5 mM protein) and narrowed again, with changed chemical shifts at [KCN] greater than 10(-2) M. At 7 degrees C two resonances split into two pairs of lines as a function of [CN-]. The temperature dependence of these resonances, in the presence of nonsaturating [CN-], suggests a slow exchange between two forms of the protein-bound copper in the presence of the anion. The apparent activation parameters associated with the interconversion of the two species indicate a local conformational change in the presence of CN-. No evidence of temperature dependence was seen in the spectrum in the presence of N-3, which, on the other hand, was fully removed from the copper by addition of CN-. No evidence was obtained for removal by CN- of a histidine bound to the copper as previously reported for low affinity anions at pH 5.5 (Bertini, I., Lanini, G., Luchinat, C., Messori, L., Monanni, R., and Scozzafava, A. (1985) J. Am. Chem. Soc. 107, 4391-4396). These results indicate that CN- has a unique pattern of binding to the enzyme copper. Since catalytic and structural data indicate that CN- is the only appropriate substrate analogue for the Cu,Zn superoxide dismutase, data from anions with much less affinity may lead to misleading conclusions on the mechanism of anion and substrate binding to the enzyme.  相似文献   

13.
B Zeeberg  M Caplow 《Biochemistry》1979,18(18):3880-3886
The dissociation constant for GDP binding to the E site of tubulin isolated by chromatography on Sepharose 6B is equal to 6.1 X 10(-8) M, as determined by the Hummel-Dryer procedure. This is smaller than any previously reported value, and the discrepancy with earlir results is analyzed.By use of a recently described column centrifugation procedure [Penefsky, H. S. (1977) J. Biol. Chem. 252, 2891-2899], it was established that GDP and GTP bind to the same site. GTP is bound 2.8-fold tighter than GDP, and the dissociation constant is 2.2 X 10(-8) M. A new method for the determination of dissociation constants for a protein-bound ligand, based on a quantitative analysis of the loss of ligand during exclusion chromatography, is presented. This has been used to determine that the dissociation constant for GDP bound to tubulin is equal to 5.5 X 10(-8) M, in excellent agreement with that determined independently from the Hummel-Dryer method. A previous theoretical treatment [Dixon, H. B. F. (1976) Biochem. J. 159, 161-162] of ligand loss during exclusion chromatography is discussed.  相似文献   

14.
Amines, including those present on proteins, spontaneously react with glucose to form fructosamines in a reaction known as glycation. In the present paper, we have explored, through a targeted gene inactivation approach, the role of FN3K (fructosamine 3-kinase), an intracellular enzyme that phosphorylates free and protein-bound fructose-epsilon-lysines and which is potentially involved in protein repair. Fn3k-/- mice looked healthy and had normal blood glucose and serum fructosamine levels. However, their level of haemoglobin-bound fructosamines was approx. 2.5-fold higher than that of control (Fn3k+/+) or Fn3k+/- mice. Other intracellular proteins were also significantly more glycated in Fn3k-/- mice in erythrocytes (1.8-2.2-fold) and in brain, kidney, liver and skeletal muscle (1.2-1.8-fold), indicating that FN3K removes fructosamines from intracellular proteins in vivo. The urinary excretion of free fructose-epsilon-lysine was 10-20-fold higher in fed mice compared with mice starved for 36 h, and did not differ between fed Fn3k+/+ and Fn3k-/- mice, indicating that food is the main source of urinary fructose-epsilon-lysine in these mice and that FN3K does not participate in the metabolism of food-derived fructose-epsilon-lysine. However, in starved animals, the urinary excretion of fructose-epsilon-lysine was 2.5-fold higher in Fn3k-/- mice compared with Fn3k+/+ or Fn3k+/- mice. Furthermore, a marked increase (5-13-fold) was observed in the concentration of free fructose-epsilon-lysine in tissues of fed Fn3k-/- mice compared with control mice, indicating that FN3K participates in the metabolism of endogenously produced fructose-epsilon-lysine. Taken together, these data indicate that FN3K serves as a protein repair enzyme and also in the metabolism of endogenously produced free fructose-epsilon-lysine.  相似文献   

15.
The reduction by dithionite ion (in excess) of methemerythrin-anion adducts, Hr+X-, to deoxyhemerythrin, Hr degree, has been examined at 25 degrees and pH 6.3 and 8.2. The results accord with the scheme: S2O42- in equilibrium 2SO2- rapid Hr+X- in equilibrium Hr++X- k-1, k1 Hr++SO2- leads to PRODUCT k2 with X- = Br-, HCO2-, CNO-, and F-, k2[SO2-] greater than k1[X-], and the pseudo first-order rate constant, kobs (= k-1), is independent of [X-] and [S2O42-]. Only with X- = NCS- is k2[SO2-] approximately k1[X-] and kobs = a[S2O42-]1/2 (b[NCS-] + [S2OR2-]1/2)-1. Values at pH 6.3 of k-1 (sec-1) and k1 (M-1 sec-1), obtained by anation and anion displacement reactions, are 2.3 x 10(-3), 1.6 x 10(-2) (Br-); 1.5 x 10(-3), 1.2 x 10(-2) (HCO2-); 1.3 x 10(-4), 0.52 (CNO-) and approximately 2 x 10(-4), 3.3 x 10(-3) (CN-, pH 7.0). Values of k-1 from reduction and displacement methods are in good agreement with each other. The value of k2 (1.6 x 10(5) M-1 sec-1, pH 6.3) in somewhat smaller than that for reduction of the met form of hemoproteins. There is only a small effect of pH on rates. Direct reduction of Hr+CN- does not occur, in contrast with Mb+CN-.  相似文献   

16.
Dichloroacetonitrile (DCAN), is a member of haloacetonitrile group and detected in drinking water supplies as a by-product of chlorination process. The mechanism of DCAN-induced carcinogenesis is believed to be mediated by oxidative bioactivation of DCAN molecules. The present study was designed to investigate if reactive oxygen species (ROS), similar to that generated in biological systems, are capable of oxidative activation of DCAN. A model ROS generation system (Fenton-like reaction; Fe2+ and H2O2) that predominantly produces hydroxyl radical (OH*) was used. DCAN oxidation was monitored by the extent of cyanide (CN-) release. The results indicate that DCAN was markedly oxidized by this system, and the rate of oxidation was dependent on DCAN concentration. Four-fold increase in H2O2 concentration (50-200 mM) resulted in a 35-fold increase in CN- release. The rates of DACN oxidation in presence of various transition metals were in the following order; iron>copper>titanium. DCAN oxidation was enhanced significantly by the addition of vitamin C and sulfhydryl compounds such as glutathione, N-acetyl-L- cysteine, and dithiothreitol (10 mM) to 140, 130, 145 and 136% of control, respectively. Addition of H2O2 scavenger; catalase or iron chelator; desferrioxamine (DFO) resulted in a significant decrease in CN- release 47 and 41% of control, respectively. Addition of various concentrations of the free radical scavengers, DMSO, or mannitol, to the incubation mixtures caused a significant decrease in DCAN oxidation, 32 and 50% of control, respectively. Michaelis-Menten kinetic analysis of the rates of this reaction, with or without inhibitors, indicated that ROS mediated oxidation of DCAN was inhibited by catalase (Ki = 0.01 mM)>DFO (0.02 mM) > mannitol (0.09 mM) > DMSO (0.12 mM). In conclusion, our results indicate that DCAN is oxidized by a ROS-mediated mechanism. This mechanism may have an important role in DCAN bioactivation and DCAN-induced genotoxicity at target organs where multiple forms of ROS generating systems are abundant.  相似文献   

17.
Myoglobin extracted from the triturative stomach of Dolabella auricularia, a common mollusc found on the Japanese coast, possesses naturally occurring substitution at the distal E7 position (Val-E7) and its oxygen affinity is only slightly lower than those of the common mammalian myoglobins possessing the usual His-E7. 1H nuclear magnetic resonance studies of Dolabella met-cyano myoglobin have revealed that a guanidino NH proton of Arg-E10 is hydrogen-bonded to the Fe-bound CN-. The role of Arg-E10 as a hydrogen-bond donor for Fe-bound ligand in the present myoglobin appears to be responsible for its relatively high ligand affinity.  相似文献   

18.
1H NMR spectra of a GDP/GTP-binding domain of human c-Ha-ras gene product (residues 1-171) in which glutamine-61 was replaced by leucine [ras(L61/1-171) protein] were analyzed. By one-dimensional and two-dimensional homonuclear Hartmann-Hahn spectroscopy and nuclear Overhauser effect (NOE) spectroscopy of the complex of the ras(L61/1-171) protein and GDP, the ribose H1', H2', H3', and H4' proton resonances of the bound GDP were identified. The guanine H8 proton resonance of the bound GDP was identified by substituting [8-2H]GDP for GDP. The dependences of the H1' and H8 proton resonance intensities on the duration of irradiation of the H1', H2', H3', and H8 protons were measured. By numerical simulation of these time-dependent NOE profiles, the conformation of the protein-bound GDP was elucidated; the guanosine moiety takes the anti form about the N-glycosidic bond with a dihedral angle of chi = -124 +/- 2 degrees and the ribose ring takes the C2'-endo form. Such an analysis of the conformation of a guanine nucleotide as bound to a GTP-binding protein will be useful for further studies on the molecular mechanism of the conformational activation of ras proteins on ligand substitution of GDP with GTP.  相似文献   

19.
GDP-mannose hydrolase catalyzes the hydrolysis with inversion of GDP-alpha-D-hexose to GDP and beta-D-hexose by nucleophilic substitution by water at C1 of the sugar. Two new crystal structures (free enzyme and enzyme-substrate complex), NMR, and site-directed mutagenesis data, combined with the structure of the enzyme-product complex reported earlier, suggest a four-stage catalytic cycle. An important loop (L6, residues 119-125) contains a ligand to the essential Mg2+ (Gln-123), the catalytic base (His-124), and three anionic residues. This loop is not ordered in the X-ray structure of the free enzyme due to dynamic disorder, as indicated by the two-dimensional 1H-15N HMQC spectrum, which shows selective exchange broadening of the imidazole nitrogen resonances of His-124 (k(ex) = 6.6 x 10(4) s(-1)). The structure of the enzyme-Mg2+-GDP-mannose substrate complex of the less active Y103F mutant shows loop L6 in an open conformation, while the structure of the enzyme-Mg2+-GDP product complex showed loop L6 in a closed, "active" conformation. 1H-15N HMQC spectra show the imidazole N epsilon of His-124 to be unprotonated, appropriate for general base catalysis. Substituting Mg2+ with the more electrophilic metal ions Mn2+ or Co2+ decreases the pKa in the pH versus kcat rate profiles, showing that deprotonation of a metal-bound water is partially rate-limiting. The H124Q mutation, which decreases kcat 10(3.4)-fold and largely abolishes its pH dependence, is rescued by the Y103F mutation, which increases kcat 23-fold and restores its pH dependence. The structural basis of the rescue is the fact that the Y103F mutation shifts the conformational equilibrium to the open form moving loop L6 out of the active site, thus permitting direct access of the specific base hydroxide from the solvent. In the proposed dissociative transition state, which occurs in the closed, active conformation of the enzyme, the partial negative charge of the GDP leaving group is compensated by the Mg2+, and by the closing of loop L2 that brings Arg-37 closer to the beta-phosphate. The development of a positive charge at mannosyl C1, as the oxocarbenium-like transition state is approached, is compensated by closing the anionic loop, L6, onto the active site, further stabilizing the transition state.  相似文献   

20.
The diacylglycerol (DG)/phorbol ester-dependent translocation of conventional protein kinase C (PKC) isozymes is mediated by the C1 domain, a membrane-targeting module that also selectively binds phosphatidylserine (PS). Using stopped-flow spectroscopy, we dissect the contribution of DG/phorbol esters (C1 ligand) and PS in driving the association and dissociation of the C1 domain from membranes. Specifically, we examine the binding to membranes of the C1B domain of PKCbeta with a substituted Trp (Y123W) whose fluorescence is quenched upon binding to membranes. Binding of this construct (C1Bbeta-Y123W) to phospholipid vesicles is cooperative with respect to PS content and dependent on C1 ligand, as previously characterized. Stopped-flow analysis reveals that the apparent association rate (k(on)(app)), but not the apparent dissociation rate (k(off)(app)), is highly sensitive to PS content: the 60-fold increase in membrane affinity for vesicles containing no PS compared with 40 mol % PS results primarily from a robust (30-fold) increase in k(on)(app) with little effect (2-fold) on k(off)(app). Membrane affinity is also controlled by the content and structure of the C1 ligand. In contrast to PS, these ligands markedly alter k(off)(app) with smaller effects on k(on)(app). We also show that the affinity for phorbol ester-containing membranes is 2 orders of magnitude higher than that for DG-containing membranes primarily resulting from differences in k(off)(app). Our data are consistent with a model in which the C1 domain is recruited to the membrane via an initial weak electrostatic interaction with PS, followed by a rapid two-dimensional search for ligand, the binding of which retains the domain at the membrane. Thus, PS drives the initial encounter, and DG/phorbol esters retain the domain on membranes. The decreased effectiveness of DG compared with phorbol esters in retaining the C1 domain on membranes contributes to the molecular dichotomy of the rapid, transient nature of DG-dependent PKC signaling versus the chronic hyperactivity of phorbol ester-activated PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号