首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary constraint results from the interaction between the distribution of available genetic variation and the position of selective optima. The availability of genetic variance in multitrait systems, as described by the additive genetic variance-covariance matrix (G), has been the subject of recent attempts to assess the prevalence of genetic constraints. However, evolutionary constraints have not yet been considered from the perspective of the phenotypes available to multivariate selection, and whether genetic variance is present in all phenotypes potentially under selection. Determining the rank of the phenotypic variance-covariance matrix (P) to characterize the phenotypes available to selection, and contrasting it with the rank of G, may provide a general approach to determining the prevalence of genetic constraints. In a study of a laboratory population of Drosophila bunnanda from northern Australia we applied factor-analytic modeling to repeated measures of individual wing phenotypes to determine the dimensionality of the phenotypic space described by P. The phenotypic space spanned by the 10 wing traits had 10 statistically supported dimensions. In contrast, factor-analytic modeling of G estimated for the same 10 traits from a paternal half-sibling breeding design suggested G had fewer dimensions than traits. Statistical support was found for only five and two genetic dimensions, describing a total of 99% and 72% of genetic variance in wing morphology in females and males, respectively. The observed mismatch in dimensionality between P and G suggests that although selection might act to shift the intragenerational population mean toward any trait combination, evolution may be restricted to fewer dimensions.  相似文献   

2.
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations.  相似文献   

3.
J Jiang  Q Zhang  L Ma  J Li  Z Wang  J-F Liu 《Heredity》2015,115(1):29-36
Predicting organismal phenotypes from genotype data is important for preventive and personalized medicine as well as plant and animal breeding. Although genome-wide association studies (GWAS) for complex traits have discovered a large number of trait- and disease-associated variants, phenotype prediction based on associated variants is usually in low accuracy even for a high-heritability trait because these variants can typically account for a limited fraction of total genetic variance. In comparison with GWAS, the whole-genome prediction (WGP) methods can increase prediction accuracy by making use of a huge number of variants simultaneously. Among various statistical methods for WGP, multiple-trait model and antedependence model show their respective advantages. To take advantage of both strategies within a unified framework, we proposed a novel multivariate antedependence-based method for joint prediction of multiple quantitative traits using a Bayesian algorithm via modeling a linear relationship of effect vector between each pair of adjacent markers. Through both simulation and real-data analyses, our studies demonstrated that the proposed antedependence-based multiple-trait WGP method is more accurate and robust than corresponding traditional counterparts (Bayes A and multi-trait Bayes A) under various scenarios. Our method can be readily extended to deal with missing phenotypes and resequence data with rare variants, offering a feasible way to jointly predict phenotypes for multiple complex traits in human genetic epidemiology as well as plant and livestock breeding.  相似文献   

4.
Pedigree-free animal models: the relatedness matrix reloaded   总被引:1,自引:0,他引:1  
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.  相似文献   

5.
The additive genetic variance–covariance matrix (G) summarizes the multivariate genetic relationships among a set of traits. The geometry of G describes the distribution of multivariate genetic variance, and generates genetic constraints that bias the direction of evolution. Determining if and how the multivariate genetic variance evolves has been limited by a number of analytical challenges in comparing G-matrices. Current methods for the comparison of G typically share several drawbacks: metrics that lack a direct relationship to evolutionary theory, the inability to be applied in conjunction with complex experimental designs, difficulties with determining statistical confidence in inferred differences and an inherently pair-wise focus. Here, we present a cohesive and general analytical framework for the comparative analysis of G that addresses these issues, and that incorporates and extends current methods with a strong geometrical basis. We describe the application of random skewers, common subspace analysis, the 4th-order genetic covariance tensor and the decomposition of the multivariate breeders equation, all within a Bayesian framework. We illustrate these methods using data from an artificial selection experiment on eight traits in Drosophila serrata, where a multi-generational pedigree was available to estimate G in each of six populations. One method, the tensor, elegantly captures all of the variation in genetic variance among populations, and allows the identification of the trait combinations that differ most in genetic variance. The tensor approach is likely to be the most generally applicable method to the comparison of G-matrices from any sampling or experimental design.  相似文献   

6.
R Abo  GD Jenkins  L Wang  BL Fridley 《PloS one》2012,7(8):e43301
Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in the context of gene sets (GSs) and pathways, referred to as gene set - expression quantitative trait loci analysis (GS-eQTL). The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components analysis (PCA) to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression associations.  相似文献   

7.
Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees.  相似文献   

8.
The elusive but ubiquitous multifactor interactions represent a stumbling block that urgently needs to be removed in searching for determinants involved in human complex diseases. The dimensionality reduction approaches are a promising tool for this task. Many complex diseases exhibit composite syndromes required to be measured in a cluster of clinical traits with varying correlations and/or are inherently longitudinal in nature (changing over time and measured dynamically at multiple time points). A multivariate approach for detecting interactions is thus greatly needed on the purposes of handling a multifaceted phenotype and longitudinal data, as well as improving statistical power for multiple significance testing via a two-stage testing procedure that involves a multivariate analysis for grouped phenotypes followed by univariate analysis for the phenotypes in the significant group(s). In this article, we propose a multivariate extension of generalized multifactor dimensionality reduction (GMDR) based on multivariate generalized linear, multivariate quasi-likelihood and generalized estimating equations models. Simulations and real data analysis for the cohort from the Study of Addiction: Genetics and Environment are performed to investigate the properties and performance of the proposed method, as compared with the univariate method. The results suggest that the proposed multivariate GMDR substantially boosts statistical power.  相似文献   

9.
Developments in ethnographic data compilation over the past decade provide the basis for a new and extended study of the dimensions of culture. The approach taken in the current research was to apply various multivariate statistical analyses for the purpose of revealing the dimensions by which culture traits tend to be associated. Based on Murdock's Ethnographic Atlas, 65 cultural traits were coded, scaled, and intercorrelated over a sample of 863 societies. Intercorrelations were also computed between traits for each of six regional subsamples. Factor analyses were then performed on the intercorrelation matrices. The general results of these analyses were the identification of 14 dimensions of culture each of which was reasonably stable over culture regions and interpretable in terms of functional relationships. Hierarchical cluster analyses were also performed on the intercorrelation matrices for the dual purposes of sorting out spurious results attributed only to a particular method of analysis and also of developing an empirical model of the dimensional structure of culture. The theoretical implications, the utilizations, and the extensions of the results in future research were considered . [Ethnographic Atlas, cultural dimensions, culture trait associations, multivariate structural analyses]  相似文献   

10.
X-Y Lou 《Heredity》2015,114(3):255-261
Biological outcomes are governed by multiple genetic and environmental factors that act in concert. Determining multifactor interactions is the primary topic of interest in recent genetics studies but presents enormous statistical and mathematical challenges. The computationally efficient multifactor dimensionality reduction (MDR) approach has emerged as a promising tool for meeting these challenges. On the other hand, complex traits are expressed in various forms and have different data generation mechanisms that cannot be appropriately modeled by a dichotomous model; the subjects in a study may be recruited according to its own analytical goals, research strategies and resources available, not only consisting of homogeneous unrelated individuals. Although several modifications and extensions of MDR have in part addressed the practical problems, they are still limited in statistical analyses of diverse phenotypes, multivariate phenotypes and correlated observations, correcting for potential population stratification and unifying both unrelated and family samples into a more powerful analysis. I propose a comprehensive statistical framework, referred as to unified generalized MDR (UGMDR), for systematic extension of MDR. The proposed approach is quite versatile, not only allowing for covariate adjustment, being suitable for analyzing almost any trait type, for example, binary, count, continuous, polytomous, ordinal, time-to-onset, multivariate and others, as well as combinations of those, but also being applicable to various study designs, including homogeneous and admixed unrelated-subject and family as well as mixtures of them. The proposed UGMDR offers an important addition to the arsenal of analytical tools for identifying nonlinear multifactor interactions and unraveling the genetic architecture of complex traits.  相似文献   

11.
With the increasing use of survival models in animal breeding to address the genetic aspects of mainly longevity of livestock but also disease traits, the need for methods to infer genetic correlations and to do multivariate evaluations of survival traits and other types of traits has become increasingly important. In this study we derived and implemented a bivariate quantitative genetic model for a linear Gaussian and a survival trait that are genetically and environmentally correlated. For the survival trait, we considered the Weibull log-normal animal frailty model. A Bayesian approach using Gibbs sampling was adopted. Model parameters were inferred from their marginal posterior distributions. The required fully conditional posterior distributions were derived and issues on implementation are discussed. The two Weibull baseline parameters were updated jointly using a Metropolis-Hasting step. The remaining model parameters with non-normalized fully conditional distributions were updated univariately using adaptive rejection sampling. Simulation results showed that the estimated marginal posterior distributions covered well and placed high density to the true parameter values used in the simulation of data. In conclusion, the proposed method allows inferring additive genetic and environmental correlations, and doing multivariate genetic evaluation of a linear Gaussian trait and a survival trait.  相似文献   

12.
Common heritable diseases ("complex traits") are assumed to be due to multiple underlying susceptibility genes. While genetic mapping methods for Mendelian disorders have been very successful, the search for genes underlying complex traits has been difficult and often disappointing. One of the reasons may be that most current gene-mapping approaches are still based on conventional methodology of testing one or a few SNPs at a time. Here, we demonstrate a simple strategy that allows for the joint analysis of multiple disease-associated SNPs in different genomic regions. Our set-association method combines information over SNPs by forming sums of relevant single-marker statistics. As previously hypothesized, we show here that this approach successfully addresses the "curse of dimensionality" problem--too many variables should be estimated with a comparatively small number of observations. We also report results of simulation studies showing that our method furnishes unbiased and accurate significance levels. Power calculations demonstrate good power even in the presence of large numbers of nondisease associated SNPs. We extended our method to microarray expression data, where expression levels for large numbers of genes should be compared between two tissue types. In applications to such data, our approach turned out to be highly efficient.  相似文献   

13.
Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene expression where the number of traits assayed per individual can reach many thousand. Here, we derive a Bayesian genetic sparse factor model for estimating the genetic covariance matrix (G-matrix) of high-dimensional traits, such as gene expression, in a mixed-effects model. The key idea of our model is that we need consider only G-matrices that are biologically plausible. An organism’s entire phenotype is the result of processes that are modular and have limited complexity. This implies that the G-matrix will be highly structured. In particular, we assume that a limited number of intermediate traits (or factors, e.g., variations in development or physiology) control the variation in the high-dimensional phenotype, and that each of these intermediate traits is sparse – affecting only a few observed traits. The advantages of this approach are twofold. First, sparse factors are interpretable and provide biological insight into mechanisms underlying the genetic architecture. Second, enforcing sparsity helps prevent sampling errors from swamping out the true signal in high-dimensional data. We demonstrate the advantages of our model on simulated data and in an analysis of a published Drosophila melanogaster gene expression data set.  相似文献   

14.
Genetically correlated traits are known to respond to indirect selection pressures caused by directional selection on other traits. It is however unclear how local adaptation in populations diverging along some phenotypic traits but not others is affected by the joint action of gene flow and genetic correlations among traits. This simulation study shows that although gene flow is a potent constraining mechanism of population adaptive divergence, it may induce phenotypic divergence in traits under homogeneous selection among habitats if they are genetically correlated with traits under divergent selection. This correlated phenotypic divergence is a nonmonotonous function of migration and increases with mutational correlation among traits. It also increases with the number of divergently selected traits provided their genetic autonomy relative to the uniformly selected trait is reduced by specific patterns of genetic covariances: populations with lower effective trait dimensionality are more likely to generate very large correlated divergence. The correlated divergence is likely to be picked up by Q(ST)-F(ST) analysis of population genetic differentiation and be erroneously ascribed to adaptive divergence under divergent selection. This study emphasizes the necessity to understand the interaction between selection and the genetic basis of adaptation in a multivariate rather than univariate context.  相似文献   

15.
Many species exhibit sexual dimorphism in a variety of characters, and the underlying genetic architecture of dimorphism potentially involves sex-specific differences in the additive-genetic variance-covariance matrix (G) of dimorphic traits. We investigated the quantitative-genetic structure of dimorphic traits in the dioecious plant Silene latifolia by estimating G (including within-sex matrices, G(m), G(f), and the between-sex variance-covariance matrix, B), and the phenotypic variance-covariance matrix (P) for seven traits. Flower number was the most sexually dimorphic trait, and was significantly genetically correlated with all traits within each sex. Negative genetic correlations between flower size and number suggested a genetic trade-off in investment, but positive environmental correlations between the same traits resulted in no physical evidence for a trade-off in the phenotype. Between-sex genetic covariances for homologous traits were always greater than 0 but smaller than 1, showing that some, but not all, of the variation in traits is caused by genes or alleles with sex-limited expression. Using common principal-components analysis (CPCA), a maximum-likelihood (ML) estimation approach, and element-by-element comparison to compare matrices, we found that G(m) and G(f) differed significantly in eigenstructure because of dissimilarity in covariances involving leaf traits, suggesting the presence of variation in sex-limited genes with pleiotropic effects and/or linkage between sex-limited loci. The sex-specific structure of G is expected to cause differences in the correlated responses to selection within each sex, promoting the further evolution and maintenance of dimorphism.  相似文献   

16.
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits.  相似文献   

17.
MOTIVATION: The proper development of any organ or tissue requires the coordinated expression of its underlying genes that can be located on different genomes present in an organism. For instance, each step in the development of seed for a higher plant is the consequence of gene interactions from the maternal, embryo and endosperm genomes. RESULTS: We present a multivariate statistical model for mapping quantitative trait loci (QTL) by incorporating two important aspects of seed development in plants-QTL interactions derived from different genomes, the maternal, embryo and endosperm, and genetic correlations among phenotypic traits expressed in different genome-specific tissues. This model, which has a high dimensionality, is constructed within the maximum-likelihood context based on a finite mixture model. The implementation of the expectation-maximization algorithm allows for the efficient estimation of QTL positions, their action and interaction effects and pleiotropic effects. The application of this high-dimensional model to a real rice dataset has validated its usefulness.Conclusions: Our model was derived for self-pollinated plants, but it can be extended to cross-pollinated plants and to animals. With the burgeoning of genetic and genomic data, this high-dimensional model will have many implications for agricultural and evolutionary genetic research. AVAILABILITY: A package of software will be provided from the corresponding author upon request.  相似文献   

18.
Dynamic models of gene expression and classification   总被引:3,自引:0,他引:3  
Powerful new methods, like expression profiles using cDNA arrays, have been used to monitor changes in gene expression levels as a result of a variety of metabolic, xenobiotic or pathogenic challenges. This potentially vast quantity of data enables, in principle, the dissection of the complex genetic networks that control the patterns and rhythms of gene expression in the cell. Here we present a general approach to developing dynamic models for analyzing time series of whole genome expression. In this approach, a self-consistent calculation is performed that involves both linear and non-linear response terms for interrelating gene expression levels. This calculation uses singular value decomposition (SVD) not as a statistical tool but as a means of inverting noisy and near-singular matrices. The linear transition matrix that is determined from this calculation can be used to calculate the underlying network reflected in the data. This suggests a direct method of classifying genes according to their place in the resulting network. In addition to providing a means to model such a large multivariate system this approach can be used to reduce the dimensionality of the problem in a rational and consistent way, and suppress the strong noise amplification effects often encountered with expression profile data. Non-linear and higher-order Markov behavior of the network are also determined in this self-consistent method. In data sets from yeast, we calculate the Markov matrix and the gene classes based on the linear-Markov network. These results compare favorably with previously used methods like cluster analysis. Our dynamic method appears to give a broad and general framework for data analysis and modeling of gene expression arrays. Electronic Publication  相似文献   

19.
Complex traits important for humans are often correlated phenotypically and genetically. Joint mapping of quantitative-trait loci (QTLs) for multiple correlated traits plays an important role in unraveling the genetic architecture of complex traits. Compared with single-trait analysis, joint mapping addresses more questions and has advantages for power of QTL detection and precision of parameter estimation. Some statistical methods have been developed to map QTLs underlying multiple traits, most of which are based on maximum-likelihood methods. We develop here a multivariate version of the Bayes methodology for joint mapping of QTLs, using the Markov chain-Monte Carlo (MCMC) algorithm. We adopt a variance-components method to model complex traits in outbred populations (e.g., humans). The method is robust, can deal with an arbitrary number of alleles with arbitrary patterns of gene actions (such as additive and dominant), and allows for multiple phenotype data of various types in the joint analysis (e.g., multiple continuous traits and mixtures of continuous traits and discrete traits). Under a Bayesian framework, parameters--including the number of QTLs--are estimated on the basis of their marginal posterior samples, which are generated through two samplers, the Gibbs sampler and the reversible-jump MCMC. In addition, we calculate the Bayes factor related to each identified QTL, to test coincident linkage versus pleiotropy. The performance of our method is evaluated in simulations with full-sib families. The results show that our proposed Bayesian joint-mapping method performs well for mapping multiple QTLs in situations of either bivariate continuous traits or mixed data types. Compared with the analysis for each trait separately, Bayesian joint mapping improves statistical power, provides stronger evidence of QTL detection, and increases precision in estimation of parameter and QTL position. We also applied the proposed method to a set of real data and detected a coincident linkage responsible for determining bone mineral density and areal bone size of wrist in humans.  相似文献   

20.
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance–covariance ( G ) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between‐environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between‐population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G . Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号