首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taylor AM  Groom A  Byrd PJ 《DNA Repair》2004,3(8-9):1219-1225
Comparison of the clinical and cellular phenotypes of different genomic instability syndromes provides new insights into functional links in the complex network of the DNA damage response. A prominent example of this principle is provided by examination of three such disorders: ataxia-telangiectasia (A-T) caused by lack or inactivation of the ATM protein kinase, which mobilises the cellular response to double strand breaks in the DNA; ataxia-telangiectasia-like disease (ATLD), a result of deficiency of the human Mre11 protein; and the Nijmegen breakage syndrome (NBS), which represents defective Nbs1 protein. Mre11 and Nbs1 are members of the Mre11/Rad50/Nbs1 (MRN) protein complex. MRN and its individual components are involved in different responses to cellular damage induced by ionising radiation and radiomimetic chemicals, including complexing with chromatin and with other damage response proteins, formation of radiation-induced foci, and the induction of different cell cycle checkpoints. The phosphorylation of Nbs1 by ATM would indicate that ATM acts upstream of the MRN complex. Consistent with this were the suggestions that ATM could be activated in the absence of fully functional Nbs1 protein. In contrast, the regulation of some ATM target proteins, e.g. Smc1 requires the MRN complex as well as ATM. Nbs1 may, therefore, be both a substrate for ATM and a mediator of ATM function. Recent studies that indicate a requirement of the MRN complex for proper ATM activation suggest that the relationship between ATM and the MRN complex in the DNA damage response is yet to be fully determined. Despite the fact that both Mre11 and Nbs1 are part of the same MRN complex, deficiency in either protein in humans does not lead to the same clinical picture. This suggests that components of the complex may also act separately.  相似文献   

2.
DNA double-strand breaks originating from diverse causes in eukaryotic cells are accompanied by the formation of phosphorylated H2AX (gammaH2AX) foci. Here we show that gammaH2AX formation is also a cellular response to topoisomerase I cleavage complexes known to induce DNA double-strand breaks during replication. In HCT116 human carcinoma cells exposed to the topoisomerase I inhibitor camptothecin, the resulting gammaH2AX formation can be prevented with the phosphatidylinositol 3-OH kinase-related kinase inhibitor wortmannin; however, in contrast to ionizing radiation, only camptothecin-induced gammaH2AX formation can be prevented with the DNA replication inhibitor aphidicolin and enhanced with the checkpoint abrogator 7-hydroxystaurosporine. This gammaH2AX formation is suppressed in ATR (ataxia telangiectasia and Rad3-related) deficient cells and markedly decreased in DNA-dependent protein kinase-deficient cells but is not abrogated in ataxia telangiectasia cells, indicating that ATR and DNA-dependent protein kinase are the kinases primarily involved in gammaH2AX formation at the sites of replication-mediated DNA double-strand breaks. Mre11- and Nbs1-deficient cells are still able to form gammaH2AX. However, H2AX-/- mouse embryonic fibroblasts exposed to camptothecin fail to form Mre11, Rad50, and Nbs1 foci and are hypersensitive to camptothecin. These results demonstrate a conserved gammaH2AX response for double-strand breaks induced by replication fork collision. gammaH2AX foci are required for recruiting repair and checkpoint protein complexes to the replication break sites.  相似文献   

3.
The Mre11/Rad50/Nbs1 (MRN) complex has a central function in facilitating activation of the ATM protein kinase at sites of DNA double‐strand breaks (DSBs). However, several other factors are also required in human cells for efficient signalling through MRN and ATM, including the tumour suppressor proteins p53‐binding protein 1 (53BP1) and BRCA1. In this study, we investigate the functions of these mediator proteins in ATM activation and find that the presence of 53BP1 and BRCA1 can amplify the effects of MRN when interactions between MRN and ATM are compromised. This effect is dependent on a direct interaction between MRN and the tandem breast cancer carboxy‐terminal (BRCT) repeats in 53BP1, and is accompanied by hyper‐phosphorylation of both Nbs1 and 53BP1. We also find that the BRCT domains of 53BP1 affect the overall structure of 53BP1 multimers and that this structure is important for promoting ATM phosphorylation of substrates as well as for the repair of DNA DSBs in mammalian cells.  相似文献   

4.
The role of Mre11 phosphorylation in the cellular response to DNA double-strand breaks (DSBs) is not well understood. Here, we show that phosphorylation of Mre11 at SQ/TQ motifs by PIKKs (PI3 Kinase-related Kinases) induces MRN (Mre11–Rad50–Nbs1) complex dissociation from chromatin by reducing Mre11 affinity for DNA. Whereas phosphorylation of Mre11 at these residues is not required for DSB-induced ATM (Ataxia-Telangiectasia mutated) activation, abrogation of Mre11 dephosphorylation impairs ATM signaling. Our study provides a functional characterization of the DNA damage-induced Mre11 phosphorylation, and suggests that MRN inactivation participates in the down-regulation of damage signaling during checkpoint recovery following DSB repair.  相似文献   

5.
Rapid activation of ATR by ionizing radiation requires ATM and Mre11   总被引:16,自引:0,他引:16  
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.  相似文献   

6.
The Mre11-Rad50-Nbs1 (MRN) complex is providing paradigm-shifting results of exceptional biomedical interest. MRN is among the earliest respondents to DNA double-strand breaks (DSBs), and MRN mutations cause the human cancer predisposition diseases Nijmegen breakage syndrome and ataxia telangiectasia-like disorder (ATLD). MRN's 3-protein multidomain composition promotes its central architectural, structural, enzymatic, sensing, and signaling functions in DSB responses. To organize the MRN complex, the Mre11 exonuclease directly binds Nbs1, DNA, and Rad50. Rad50, a structural maintenance of chromosome (SMC) related protein, employs its ATP-binding cassette (ABC) ATPase, Zn hook, and coiled coils to bridge DSBs and facilitate DNA end processing by Mre11. Contributing to MRN regulatory roles, Nbs1 harbors N-terminal phosphopeptide interacting FHA and BRCT domains, as well as C-terminal ataxia telangiectasia mutated (ATM) kinase and Mre11 interaction domains. Current emerging structural and biological evidence suggests that MRN has 3 coupled critical roles in DSB sensing, stabilization, signaling, and effector scaffolding: (1) expeditious establishment of protein--nucleic acid tethering scaffolds for the recognition and stabilization of DSBs; (2) initiation of DSB sensing, cell-cycle checkpoint signaling cascades, and establishment of epigenetic marks via the ATM kinase; and (3) functional regulation of chromatin remodeling in the vicinity of a DSB.  相似文献   

7.
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.  相似文献   

8.
Ciapponi L  Cenci G  Gatti M 《Genetics》2006,173(3):1447-1454
The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the maintenance of chromosome integrity. Larval brain cells of nbs mutants display telomeric associations (TAs) but the frequency of these TAs is lower than in either mre11 or rad50 mutants. Consistently, Rad50 accumulates in the nuclei of wild-type cells but not in those of nbs cells, indicating that Nbs mediates transport of the Mre11/Rad50 complex in the nucleus. Moreover, epistasis analysis revealed that rad50 nbs, tefu (ATM) nbs, and mei-41 (ATR) nbs double mutants have significantly higher frequencies of TAs than either of the corresponding single mutants. This suggests that Nbs and the Mre11/Rad50 complex play partially independent roles in telomere protection and that Nbs functions in both ATR- and ATM-controlled telomere protection pathways. In contrast, analysis of chromosome breakage indicated that the three components of the MRN complex function in a single pathway for the repair of the DNA damage leading to chromosome aberrations.  相似文献   

9.
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia Rad3-related (ATR) and the Mre11/Rad50/Nbs1 complex ensure genome stability in response to DNA damage. However, their essential role in DNA metabolism remains unknown. Here we show that ATM and ATR prevent accumulation of DNA double-strand breaks (DSBs) during chromosomal replication. Replicating chromosomes accumulate DSBs in Xenopus laevis egg extracts depleted of ATM and ATR. Addition of ATM and ATR proteins to depleted extracts prevents DSB accumulation by promoting restart of collapsed replication forks that arise during DNA replication. We show that collapsed forks maintain MCM complex but lose Pol epsilon, and that Pol epsilon reloading requires ATM and ATR. Replication fork restart is abolished in Mre11 depleted extracts and is restored by supplementation with recombinant human Mre11/Rad50/Nbs1 complex. Using a novel fluorescence resonance energy transfer-based technique, we demonstrate that ATM and ATR induce Mre11/Rad50/Nbs1 complex redistribution to restarting forks. This study provides direct biochemical evidence that ATM and ATR prevent accumulation of chromosomal abnormalities by promoting Mre11/Rad50/Nbs1 dependent recovery of collapsed replication forks.  相似文献   

10.
Surveillance for maintaining genomic pristineness, a protective safeguard of great onco‐preventive significance, has been dedicated in eukaryotic cells to a highly conserved and synchronised signalling cascade called DNA damage response (DDR). Not surprisingly, foreign genetic elements like those of viruses are often potential targets of DDR. Viruses have evolved novel ways to subvert this genome vigilance by twisting canonical DDR to a skewed, noncanonical response through selective hijacking of some DDR components while antagonising the others. Though reported for many DNA and a few RNA viruses, potential implications of DDR have not been addressed yet in case of infection with rotavirus (RV), a double‐stranded RNA virus. In the present study, we aimed at the modulation of ataxia telangiectasia mutated (ATM)‐checkpoint kinase 2 (Chk2) branch of DDR in response to RV infection in vitro. We found activation of the transducer kinase ATM and its downstream effector Chk2 in RV‐SA11‐infected cells, the activation response being maximal at 6‐hr post infection. Moreover, ATM activation was found to be dependent on induction of the upstream sensor Mre11‐Rad50‐Nbs1 (MRN) complex. Interestingly, RV‐SA11‐mediated maximal induction of ATM‐Chk2 pathway was revealed to be neither preceded by occurrence of nuclear DNA damage nor transduced to formation of damage‐induced canonical nuclear foci. Subsequent investigations affirmed sequestration of MRN components as well as ATM‐Chk2 proteins away from nucleus into cytosolic RV replication factories (viroplasms). Chemical intervention targeting ATM and Chk2 significantly inhibited fusion and maturation of viroplasms leading to attenuated viral propagation. Cumulatively, the current study describes RV‐mediated activation of a noncanonical ATM‐Chk2 branch of DDR skewed in favour of facilitated viroplasm fusion and productive viral perpetuation.  相似文献   

11.
The Mre11 complex (Mre11, Rad50, and Nbs1) and Chk2 have been implicated in the DNA-damage response, an inducible process required for the suppression of malignancy. The Mre11 complex is predominantly required for repair and checkpoint activation in S phase, whereas Chk2 governs apoptosis. We examined the relationship between the Mre11 complex and Chk2 in the DNA-damage response via the establishment of Nbs1(DeltaB/DeltaB) Chk2(-/-) and Mre11(ATLD1/ATLD1) Chk2(-/-) mice. Chk2 deficiency did not modify the checkpoint defects or chromosomal instability of Mre11 complex mutants; however, the double-mutant mice exhibited synergistic defects in DNA-damage-induced p53 regulation and apoptosis. Nbs1(DeltaB/DeltaB) Chk2(-/-) and Mre11(ATLD1/ATLD1) Chk2(-/-) mice were also predisposed to tumors. In contrast, DNA-PKcs-deficient mice, in which G1-specific chromosome breaks are present, did not exhibit synergy with Chk2(-/-) mutants. These data suggest that Chk2 suppresses the oncogenic potential of DNA damage arising during S and G2 phases of the cell cycle.  相似文献   

12.
The Mre11/Nbs1/Rad50 complex (MRN) plays multiple roles in the maintenance of genome stability, including repair of double-stranded breaks (DSBs) and activation of the S-phase checkpoint. Here we demonstrate that MRN is required for the prevention of DNA rereplication in mammalian cells. DNA replication is strictly regulated by licensing control so that the genome is replicated once and only once per cell cycle. Inactivation of Nbs1 or Mre11 leads to a substantial increase of DNA rereplication induced by overexpression of the licensing factor Cdt1. Our studies reveal that multiple mechanisms are likely involved in the MRN-mediated suppression of rereplication. First, both Mre11 and Nbs1 are required for facilitating ATR activation when Cdt1 is overexpressed, which in turn suppresses rereplication. Second, Cdt1 overexpression induces ATR-mediated phosphorylation of Nbs1 at Ser343 and this phosphorylation depends on the FHA and BRCT domains of Nbs1. Mutations at Ser343 or in the FHA and BRCT domains lead to more severe rereplication when Cdt1 is overexpressed. Third, the interaction of the Mre11 complex with RPA is important for the suppression of rereplication. This suggests that modulating RPA activity via a direct interaction of MRN is likely one of the effector mechanisms to suppress rereplication. Moreover, we demonstrate that MRN is also required for preventing the accumulation of DSBs when rereplication is induced. Therefore, our studies suggest new roles of MRN in the maintenance of genome stability through preventing rereplication and rereplication-associated DSBs when licensing control is compromised.  相似文献   

13.
The MRE11‐RAD50‐NBS1 (MRN) complex is essential for the detection of DNA double‐strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17‐dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1‐dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.  相似文献   

14.
MRN and the race to the break   总被引:1,自引:0,他引:1  
In all living cells, DNA is constantly threatened by both endogenous and exogenous agents. In order to protect genetic information, all cells have developed a sophisticated network of proteins, which constantly monitor genomic integrity. This network, termed the DNA damage response, senses and signals the presence of DNA damage to effect numerous biological responses, including DNA repair, transient cell cycle arrests (“checkpoints”) and apoptosis. The MRN complex (MRX in yeast), composed of Mre11, Rad50 and Nbs1 (Xrs2), is a key component of the immediate early response to DNA damage, involved in a cross-talk between the repair and checkpoint machinery. Using its ability to bind DNA ends, it is ideally placed to sense and signal the presence of double strand breaks and plays an important role in DNA repair and cellular survival. Here, we summarise recent observation on MRN structure, function, regulation and emerging mechanisms by which the MRN nano-machinery protects genomic integrity. Finally, we discuss the biological significance of the unique MRN structure and summarise the emerging sequence of early events of the response to double strand breaks orchestrated by the MRN complex.  相似文献   

15.
The Mre11–Rad50–Nbs1 (MRN) complex is a central factor in the repair of DNA double‐strand breaks (DSBs). The ATP‐dependent mechanisms of how MRN detects and endonucleolytically processes DNA ends for the repair by microhomology‐mediated end‐joining or further resection in homologous recombination are still unclear. Here, we report the crystal structures of the ATPγS‐bound dimer of the Rad50NBD (nucleotide‐binding domain) from the thermophilic eukaryote Chaetomium thermophilum (Ct) in complex with either DNA or CtMre11RBD (Rad50‐binding domain) along with small‐angle X‐ray scattering and cross‐linking studies. The structure and DNA binding motifs were validated by DNA binding experiments in vitro and mutational analyses in Saccharomyces cerevisiae in vivo. Our analyses provide a structural framework for the architecture of the eukaryotic Mre11–Rad50 complex. They show that a Rad50 dimer binds approximately 18 base pairs of DNA along the dimer interface in an ATP‐dependent fashion or bridges two DNA ends with a preference for 3′ overhangs. Finally, our results may provide a general framework for the interaction of ABC ATPase domains of the Rad50/SMC/RecN protein family with DNA.  相似文献   

16.
ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-beta. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.  相似文献   

17.
Mdm2 directly regulates the p53 tumor suppressor. However, Mdm2 also has p53-independent activities, and the pathways that mediate these functions are unresolved. Here we report the identification of a specific association of Mdm2 with Mre11, Nbs1, and Rad50, a DNA double strand break repair complex. Mdm2 bound to the Mre11-Nbs1-Rad50 complex in primary cells and in cells containing inactivated p53 or p14/p19ARF, a regulator of Mdm2. Further analysis revealed that Mdm2 directly bound to Nbs1 but not to Mre11 or Rad50. Amino acids 198-314 of Mdm2 were required for Mdm2/Nbs1 association, and neither the N terminus forkhead-associated and breast cancer C-terminal domains nor the C terminus Mre11 binding domain of Nbs1 mediated the interaction of Nbs1 with Mdm2. Mdm2 co-localized with Nbs1 to sites of DNA damage following gamma-irradiation. Notably, Mdm2 overexpression inhibited DNA double strand break repair, and this was independent of p53 and ARF, the alternative reading frame of the Ink4alocus. The delay in DNA repair imposed by Mdm2 required the Nbs1 binding domain of Mdm2, but the ubiquitin ligase domain in Mdm2 was dispensable. Therefore, Nbs1 is a novel p53-independent Mdm2 binding protein and links Mdm2 to the Mre11-Nbs1-Rad50-regulated DNA repair response.  相似文献   

18.
The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.  相似文献   

19.
The protein kinases ataxia‐telangiectasia mutated (ATM) and ATM‐Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild‐type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection.  相似文献   

20.
The MRN complex consists of the two evolutionarily conserved components Mre11 and Rad50 and the third less-conserved component Nbs1/Xrs2. This complex mediates telomere maintenance in addition to a variety of functions in response to DNA double-strand breaks, including homologous recombination, nonhomologous end joining (NHEJ), and activation of DNA damage checkpoints. Mutations in the Mre11 gene cause the human ataxia-telangiectasia-like disorder (ATDL). Here, we show that null mutations in the Drosophila mre11 and rad50 genes cause both telomeric fusion and chromosome breakage. Moreover, we demonstrate that these mutations are in the same epistasis group required for telomere capping and mitotic chromosome integrity. Using an antibody against Rad50, we show that this protein is uniformly distributed along mitotic chromosomes, and that Rad50 is unstable in the absence of its binding partner Mre11. To define the roles of rad50 and mre11 in telomere protection, mutant chromosome preparations were immunostained for both HP1 and HOAP, two proteins that protect Drosophila telomeres from fusion. Cytological analysis revealed that mutations in rad50 and mre11 drastically reduce accumulation of HOAP and HP1 at telomeres. This suggests that the MRN complex protects Drosophila telomeres by facilitating recruitment of HOAP and HP1 at chromosome ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号