首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Chiral considerations are found to be very much relevant in various aspects of forensic toxicology and pharmacology. In forensics, it has become increasingly important to identify the chirality of doping agents to avoid legal arguments and challenges to the analytical findings. The scope of this study was to develop an liquid chromatography–mass spectrometry (LCMS) method for the enantiomeric separation of typical illicit drugs such as ephedrines (ie, 1S,2R(+)‐ephedrine and 1R,2S(?)‐ephedrine) and pseudoephedrine (ie, R,R(?)‐pseudoephedrine and S,S(+)‐pseudoephedrine) by using normal phase chiral liquid chromatography–high‐resolution mass spectrometry technique. Results show that the Lux i‐amylose‐1 stationary phase has very broad and balancing‐enantio‐recognition properties towards ephedrine analogues, and this immobilized chiral stationary phase may offer a powerful tool for enantio‐separation of different types of pharmaceuticals in the normal phase mode. The type of mobile phase and organic modifier used appear to have dramatic influences on separation quality. Since the developed method was able to detect and separate the enantiomers at very low levels (in pico grams), this method opens easy access for the unambiguous identification of these illicit drugs and can be used for the routine screening of the biological samples in the antidoping laboratories.  相似文献   

6.
7.
Volatile organic compounds (VOCs) are chemical species that play an important role in determining the characteristic aroma and flavor of fruits. Apple (Malus × domestica Borkh .) cultivars differ in their aroma and composition of VOCs. To determine varietal differences in the aroma profiles, VOCs emitted by 7 modern and 35 old apple cultivars were analyzed using Proton Transfer Reaction Mass Spectrometry (PTR‐MS). PTR‐MS is a rapid, reproducible, and non‐destructive spectrometric technique for VOC analysis of single fruits, developed for direct injection analysis. In the present study, we analyzed the differences in the emission of VOCs from single fruits at harvest and after a storage period of 60±10 days, followed by 3 d of shelf life. Our results show that VOC profile differences among apple cultivars were more pronounced after storage than at harvest. Furthermore, chemodiversity was higher in old cultivars compared to modern cultivars, probably due to their greater genetic variability. Our data highlight the importance of storage and shelf life are crucial for the development of the typical aroma and flavor of several apple cultivars. The validity of the method is demonstrated by comparison of two different harvest years.  相似文献   

8.
9.
10.
Owing to its high temporal sensitivity, saliva has distinct advantages for measuring steroids, compared with other noninvasive samples such as urine and feces. Here, we report the validity of assaying salivary cortisol (C) and testosterone (T) using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) in captive male chimpanzees, Pan troglodytes. For both the C and T concentrations, we found positive relationships between saliva and plasma. The concentrations of C and T in saliva showed clear patterns of diurnal fluctuation, whereas those in urine and feces did not. These results suggest that the salivary steroid concentrations can be regarded as good indicators of circulating steroid levels. We also developed and validated an efficient method for collecting saliva samples from cotton rope. Although rope includes inherent steroid‐like compounds and may affect the accuracy of steroid measurements, our rope‐washing procedures effectively removed intrinsic steroidal materials. There was a significant association between the C and T concentrations measured from saliva collected from rope licked by the chimpanzees and those measured from saliva collected directly from the mouth. Salivary T values estimated by LC/MS‐MS were similar to those measured by radioimmunoassay. The results indicate the usefulness of saliva as a noninvasive steroid measure and that steroids in the saliva of chimpanzees can be accurately measured by LC‐MS/MS. Am. J. Primatol. 71:696–706, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
We introduce a simple new approach for time‐resolved multiplexed analysis of complex systems using near‐infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user‐friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time‐gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely‐available software, has the advantage of time‐resolved NIR imaging, including better tissue penetration and background‐free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image‐guided surgery or optical tomography.   相似文献   

12.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

13.
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre‐exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol?1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol?1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release.  相似文献   

14.
DKP formation is a serious side reaction during the solid‐phase synthesis of peptide acids containing either Pro or Gly at the C‐terminus. This side reaction not only leads to a lower overall yield, but also to the presence in the reaction crude of several deletion peptides lacking the first amino acids. For the preparation of protected peptides using the Fmoc/tBu strategy, the use of a ClTrt‐Cl‐resin with a limited incorporation of the C‐terminal amino acid is the method of choice. The use of resins with higher loading levels leads to more impure peptide crudes. The use of HPLC‐ESMS is a useful method for analysing complex samples, such as those formed when C‐terminal Pro peptides are prepared by non‐optimized solid‐phase strategies. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
A series of novel dipeptidyl boronic acid inhibitors of 20S proteasome were designed and synthesized. Aliphatic groups at R1 position were designed for the first time to fully understand the SAR (structure–activity relationship). Among the screened compounds, novel inhibitor 5c inhibited the CT-L (chymotrypsin-like) activity with IC50 of 8.21?nM and the MM (multiple myeloma) cells RPMI8226, U266B and ARH77 proliferations with the IC50 of 8.99, 6.75 and 9.10?nM, respectively, which showed similar in vitro activities compared with the compound MLN2238 (biologically active form of marketed MLN9708). To investigate the oral availability, compound 5c was esterified to its prodrug 6a with the enzymatic IC50 of 6.74?nM and RPMI8226, U266B and ARH77 cell proliferations IC50 of 2.59, 4.32 and 3.68?nM, respectively. Furthermore, prodrug 6a exhibited good pharmacokinetic properties with oral bioavailability of 24.9%, similar with MLN9708 (27.8%). Moreover, compound 6a showed good microsomal stabilities and displayed stronger in vivo anticancer efficacy than MLN9708 in the human ARH77 xenograft mouse model. Finally, cell cycle results showed that compound 6a had a significant inhibitory effect on CT-L and inhibited cell cycle progression at the G2M stage.  相似文献   

16.

Background

Proteins in human tissues and body fluids continually undergo spontaneous oxidation and glycation reactions forming low levels of oxidation and glycation adduct residues. Proteolysis of oxidised and glycated proteins releases oxidised and glycated amino acids which, if they cannot be repaired, are excreted in urine.

Scope of Review

In this review we give a brief background to the classification, formation and processing of oxidised and glycated proteins in the clinical setting. We then describe the application of stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) for measurement of oxidative and glycation damage to proteins in clinical studies, sources of error in pre-analytic processing, corroboration with other techniques – including how this may be improved – and a systems approach to protein damage analysis for improved surety of analyte estimations.

Major conclusions

Stable isotopic dilution analysis LC-MS/MS provides a robust reference method for measurement of protein oxidation and glycation adducts. Optimised pre-analytic processing of samples and LC-MS/MS analysis procedures are required to achieve this.

General significance

Quantitative measurement of protein oxidation and glycation adducts provides information on level of exposure to potentially damaging protein modifications, protein inactivation in ageing and disease, metabolic control, protein turnover, renal function and other aspects of body function. Reliable and clinically assessable analysis is required for translation of measurement to clinical diagnostic use. Stable isotopic dilution analysis LC-MS/MS provides a “gold standard” approach and reference methodology to which other higher throughput methods such as immunoassay and indirect methods are preferably corroborated by researchers and those commercialising diagnostic kits and reagents. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

17.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号