首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
We report the first proteomic analysis of the insoluble sub-proteome of the alkaliphilic and halotolerant deep-sea bacterium Oceanobacillus iheyensis HTE831. A multidimensional gel-based and gel-free analysis was utilised and a total of 4352 peptides were initially identified by automated MS/MS identification software. Automated curation of this list using PROVALT reduced our peptide list to 467 uniquely identified peptides that resulted in the positive identification of 153 proteins. These identified proteins were functionally classified and physiochemically characterised. Of 26 proteins identified as hypothetical conserved, we have assigned function to all but four. A total of 41 proteins were predicted to possess signal peptides. In silico investigation of these proteins allowed us to identify three of the five bacterial classes of signal peptide, namely: (i) twin-arginine translocation; (ii) Sec-type and (iii) lipoprotein transport. Our proteomic strategy has also allowed us to identify, at neutral pH, a number of proteins described previously as belonging to two putative transport systems believed to be of importance in the alkaliphilic adaptation of O. iheyensis HTE831.  相似文献   

2.
3.
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by RPLC. One set of 30 fractions was analyzed by 100‐min CZE‐ESI‐MS/MS separations (50 h total instrument time), and a second set of 15 fractions was analyzed by 3‐h UPLC‐ESI‐MS/MS separations (45 h total instrument time). CZE‐MS/MS produced 70% as many protein IDs (4134 versus 5787) and 60% as many peptide IDs (22 535 versus 36 848) as UPLC‐MS/MS with similar instrument time (50 h versus 45 h) but with 50 times smaller total consumed sample amount (1.5 μg versus 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50‐fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically pumped nanospray interface used in CZE. This report is the first comparison of CZE‐MS/MS and UPLC‐MS/MS for large‐scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE‐ESI‐MS/MS approach those produced by UPLC‐MS/MS, but with nearly two orders of magnitude lower sample amounts.  相似文献   

4.
We present here the first proteomics analysis of uveal melanoma (UM) cells. These cells represent a good model for the identification of polypeptide markers, which could be developed as diagnostic tools. UM is the most common primary intraocular tumour in adults. In contrast to other cancers, the survival rate of patients with this malignancy has changed little over the past few decades; a better understanding of the molecular biology of UM oncogenesis and metastasis is needed to build the basis for the identification of novel drug targets. In the study presented here, proteins from a UM primary cell culture were separated by 2-DE using a pI 3-10 gradient; 270 spots were analysed by LC-MS/MS, identifying 683 proteins derived from 393 different genes. Of those, 69 (18%) are related to cancer processes involving cell division, proliferation, invasion, metastasis, oncogenesis, drug resistance and others. To our knowledge, 96% of the proteins identified, including 16 hypothetical proteins, have never been reported in UM before. This study represents the first step towards the establishment of a UM protein database as a valuable resource for the study of this malignancy.  相似文献   

5.
Changes in leaf soluble proteome were explored in 3‐month‐old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1–50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked‐nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2‐DE (linear 4–7 pH gradient). Analysis of CCB‐stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC‐MS/MS. In both populations, Cu excess impacted both light‐dependent (OEE, cytochrome b6‐f complex, and chlorophyll a‐b binding protein), and ‐independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin‐NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S‐containing amino‐acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 ( http//proteomecentral.proteomexchange.org/dataset/PXD001930 ).  相似文献   

6.
Fuller B  Stevens SM  Sehnke PC  Ferl RJ 《Proteomics》2006,6(10):3050-3059
In this study, various proteomics-based methods were utilized to examine the 14-3-3 protein family in Arabidopsis thaliana. A protein extract was prepared from an Arabidopsis hypocotyl suspension culture and analyzed by two-dimensional gel electrophoresis and immunoblotting with a 14-3-3 monoclonal antibody that recognizes multiple Arabidopsis isoforms. Protein spots that cross-reacted with the monoclonal antibody as well as the surrounding spots were analyzed by high performance liquid chromatography in conjunction with electrospray-tandem mass spectrometry. Nine separate spots contained 14-3-3s and each spot contained multiple 14-3-3 isoforms. Every isoform observed was verified by the identification of at least one isoform-specific peptide. Further analysis by mass spectrometry revealed that the isoforms Chi, Upsilon, Omega, Phi, and Lambda were acetylated on their N termini and no non-acetylated N termini were recovered. These data, together with the distribution of isoforms and the confirmation that 14-3-3s are not complexed during urea denaturing isoelectric focusing, supports the conclusion that Arabidopsis 14-3-3s are acetylated in vivo and are significantly affected by other post-translational modifications.  相似文献   

7.
Proteomics profiling of intact proteins based on MALDI‐TOF MS and derived platforms has been used in cancer biomarker discovery studies. This approach suffers from a number of limitations such as low resolution, low sensitivity, and that no knowledge is available on the identity of the respective proteins in the discovery mode. Nevertheless, it remains the most high‐throughput, untargeted mode of clinical proteomics studies to date. Here we compare key protein separation and MS techniques available for protein biomarker identification in this type of studies and define reasons of uncertainty in protein peak identity. As a result of critical data analysis, we consider 3D protein separation and identification workflows as optimal procedures. Subsequently, we present a new protocol based on 3D LC‐MS/MS with top‐down at high resolution that enabled the identification of HNRNP A2/B1 intact peptide as correlating with the estrogen receptor expression in breast cancer tissues. Additional development of this general concept toward next generation, top‐down based protein profiling at high resolution is discussed.  相似文献   

8.
A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC‐MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four‐protein mixture, the same four‐protein mixture spiked into a complex biological background, and a variety of other “system” type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to a more conventional data directed approach using the same identification criteria, with a concurrent increase in both sequence coverage and the number of modified peptides.  相似文献   

9.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

10.
An analytical scheme was developed for the separation and detection of organoarsenicals using a zwitterionic stationary phase of hydrophilic interaction chromatography (ZIC®‐HILIC) coupled in parallel to electrospray ionization mass spectrometry (ESI‐MS) and to inductively coupled plasma mass spectroscopy (ICP‐MS). The optimization of separation and detection for organoarsenicals was mainly focused on the influence of the percentage of acetonitrile (MeCN) used as a major component of the mobile phase. Isocratic and gradient elution was applied by varying the MeCN percentage from 78 % to 70 % MeCN and 22 % to 30 % of an aqueous solution of ammonium acetate (125 mM NH4Ac; pH 8.3) on a ZIC®‐HILIC column (150 × 2.1 mm id, 3.5 μm), to allow for the separation and successful detection of nine organoarsenicals (i.e., 3‐nitro‐4‐hydroxyphenylarsonic acid (roxarsone, Rox), phenylarsonic acid (PAA), p‐arsanilic acid (p‐ASA), phenylarsine oxide (PAO), dimethylarsinate (DMA), methylarsonate (MMA), arsenobetaine (AsB), arsenocholine (AsC) and trimethylarsine oxide (TMAO)) within 45 min. All analytes were prepared in the mobile phase. The flow rate of the mobile phase, the splitting ratio between ICP‐MS and ESI‐MS detection, and the oxygen addition were adapted to ensure that there appeared a stably burning inductively coupled plasma. Furthermore, the analytical method was evaluated by the identification and quantification of AsB in the reference material DORM‐2 (dogfish muscle) resulting in a 95‐% recovery with respect to the AsB concentration in the extract.  相似文献   

11.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   

12.
Qiu Y  Kathariou S  Lubman DM 《Proteomics》2006,6(19):5221-5233
Bacterial cold adaptation in Exiguobacterium sibiricum 255-15 was studied on a proteomic scale using a 2-D liquid phase separation coupled with MS technology. Whole-cell lysates of E. sibiricum 255-15 grown at 4 degrees C and 25 degrees C were first fractionated according to pI by chromatofocusing (CF), and further separated based on hydrophobicity by nonporous silica RP HPLC (NPS-RP-HPLC) which was on-line coupled with an ESI-TOF MS for intact protein M(r) measurement and quantitative interlysate comparison. Mass maps were created to visualize the differences in protein expression between different growth temperatures. The differentially expressed proteins were then identified by PMF using a MALDI-TOF MS and peptide sequencing by MS/MS with a MALDI quadrupole IT TOF mass spectrometer (MALDI-QIT-TOF MS). A total of over 500 proteins were detected in this study, of which 256 were identified. Among these proteins 39 were cold acclimation proteins (Caps) that were preferentially or uniquely expressed at 4 degrees C and three were homologous cold shock proteins (Csps). The homologous Csps were found to be similarly expressed at 4 degrees C and 25 degrees C, where these three homologous Csps represent about 10% of the total soluble proteins at both 4 degrees C and 25 degrees C.  相似文献   

13.
Introduction – Quality control in the pharmaceutical and phytopharmaceutical industries requires fast and reliable methods for the analysis of raw materials and final products. Objective – This study evaluates different analytical approaches in order to recognise the most suitable technique for the analysis of carbohydrates in herbal drug preparations. Methodology – The specific focus of the study is on thin‐layer chromatography (TLC), gas chromatography (GC), and a newly developed mass spectrometric method, i.e. matrix free material enhanced laser desorption/ionisation time of flight mass spectrometry (mf‐MELDI‐MS). Samples employed in the study were standards and microwave‐assisted water extracts from Quercus. Results – TLC analysis proved the presence of mono‐, di‐ and trisaccharides within the biological sample and hinted at the existence of an unknown carbohydrate of higher oligomerisation degree. After evaluation of different derivatisation techniques, GC‐MS confirmed data obtained via TLC for mono‐ to trisaccharides, delivering additionally quantified values under a considerable amount of time. A carbohydrate of higher oligomerisation degree could not be found. The application of mf‐MELDI‐MS further confirmed the presence of carbohydrates up to trisaccharides, also hinting at the presence of a form of tetrasaccharide. Besides this information, mf‐MELDI‐MS delivered further data about other substances present in the extract. Quantitative determination resulted in 1.750, 1.736 and 0.336 mg/mL for glucose, sucrose and raffinose respectively. Conclusion – Evaluation of all three techniques employed, clearly proved the heightened performance of mf‐MELDI‐MS for the qualitative analysis of complex mixtures, as targets do not need modification and analysis requires only a few minutes. In addition, GC‐MS is suitable for quantitative analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and rapid method for the identification of Vinca alkaloids from a crude extract of Catharanthus roseus G. Don (Apocynaceae) by direct-injection electrospray ionisation (ESI) and tandem mass spectrometry (MS/MS) has been developed. The alkaloids vindoline, vindolidine, vincristine and vinblastine were evaluated in a commercial extract of C. roseus using this method. Catharanthine and its isomers 19S-vindolinine and vindolinine were detected in the commercial product by direct injection ESI/MS/MS and confirmed by preparation and by HPLC-ESI/MS. For the characterisation of different fragment fingerprints, ESI/MS/MS is a sensitive, rapid and convenient technique by which to identify some constituents in complex and mixed plant extracts.  相似文献   

15.
This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.  相似文献   

16.
Swaim CL  Anton BP  Sharma SS  Taron CH  Benner JS 《Proteomics》2008,8(13):2714-2723
Secretion of proteins is the most common approach to protein expression in Kluyveromyces lactis. A proteomic analysis was performed on spent fermentation medium following bioreactor propagation of a wild-type industrial strain to identify proteins naturally secreted by K. lactis cells. Multidimensional separations were conducted and RP online ESI-MS/MS analysis identified 81 secreted proteins. In addition, an in silico analysis predicted 178 K. lactis proteins to be secreted via the general secretory pathway (GSP). These two datasets were compared and approximately 70% of the K. lactis proteins detected in the culture medium possessed a GSP sequence. The detected proteins included those involved with cell wall structure and synthesis, carbohydrate metabolism, and proteolysis, a result that may have significant bearing on heterologous protein expression. Additionally, both the experimental and in silico datasets were compared to similar, previously published datasets for Candida albicans. With the methodology presented here, we provide the deepest penetration into a yeast secretome yet reported.  相似文献   

17.
18.
19.
The Escherichia coli proteome was digested with trypsin and fractionated using SPE on a C18 SPE column. Seven fractions were collected and analyzed by CZE‐ESI‐MS/MS. The separation was performed in a 60‐cm‐long linear polyacrylamide‐coated capillary with a 0.1% v/v formic acid separation buffer. An electrokinetic sheath‐flow electrospray interface was used to couple the separation capillary with an Orbitrap‐Velos operating in higher‐energy collisional dissociation mode. Each CZE‐ESI‐MS/MS run lasted 50 min and total MS time was 350 min. A total of 23 706 peptide spectra matches, 4902 peptide IDs, and 871 protein group IDs were generated using MASCOT with false discovery rate less than 1% on the peptide level. The total mass spectrometer analysis time was less than 6 h, the sample identification rate (145 proteins/h) was more than two times higher than previous studies of the E. coli proteome, and the amount of sample consumed (<1 μg) was roughly fourfold less than previous studies. These results demonstrate that CZE is a useful tool for the bottom‐up analysis of prokaryote proteomes.  相似文献   

20.
In this work, we report the development of a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@nSiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high‐surface areas of the microspheres were demonstrated to have good size‐exclusion effect for the adsorption of peptides. An increase of S/N ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using myoglobin tryptic digest solution. The enrichment efficiency of re‐used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large‐scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano‐LC‐ESI‐MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号