首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arenavirus envelope glycoprotein (GPC) initiates infection in the host cell through pH-induced fusion of the viral and endosomal membranes. As in other class I viral fusion proteins, this process proceeds through a structural reorganization in GPC in which the ectodomain of the transmembrane fusion subunit (G2) engages the host cell membrane and subsequently refolds to form a highly stable six-helix bundle structure that brings the two membranes into apposition for fusion. Here, we describe a G2-directed monoclonal antibody, F100G5, that prevents membrane fusion by binding to an intermediate form of the protein on the fusion pathway. Inhibition of syncytium formation requires that F100G5 be present concomitant with exposure of GPC to acidic pH. We show that F100G5 recognizes neither the six-helix bundle nor the larger trimer-of-hairpins structure in the postfusion form of G2. Rather, Western blot analysis using recombinant proteins and a panel of alanine-scanning GPC mutants revealed that F100G5 binding is dependent on an invariant lysine residue (K283) near the N terminus of G2, in the so-called fusion peptide that inserts into the host cell membrane during the fusion process. The F100G5 epitope is located in the internal segment of the bipartite GPC fusion peptide, which also contains four conserved cysteine residues, raising the possibility that this fusion peptide may be highly structured. Collectively, our studies indicate that F100G5 identifies an on-path intermediate form of GPC. Binding to the transiently exposed fusion peptide may interfere with G2 insertion into the host cell membrane. Strategies to effectively target fusion peptide function in the endosome may lead to novel classes of antiviral agents.Enveloped viruses enter their target cells through fusion of the virus and cell membranes, in a process promoted by the viral envelope glycoprotein. For some viruses, such as human immunodeficiency virus (HIV), entry is initiated by interaction of the envelope glycoprotein with cell surface receptor proteins. Other viruses, such as influenza virus, are endocytosed and membrane fusion is triggered by exposure to acidic pH in the maturing endosome. The subsequent merger of the viral and cell membranes is accomplished through a major structural reorganization of the envelope glycoprotein. Antiviral strategies that target virus entry by using neutralizing antibodies or small-molecule fusion inhibitors can, in many cases, prevent virus infection and disease.The Arenaviridae comprise a diverse group of rodent-borne viruses, some of which are responsible for severe hemorrhagic fevers in humans. Lassa fever virus (LASV) is endemic in western Africa (59), and at least five New World species are recognized to cause fatal disease in the Americas, including the Argentine hemorrhagic fever virus Junín (JUNV) (63). New pathogenic arenavirus species continue to emerge from their distinct animal reservoirs (1, 11, 24). At present, there are no licensed vaccines or effective therapies to address the threat of arenavirus infection.Arenaviruses are enveloped, negative-strand RNA viruses whose bipartite genome encodes ambisense expression of four viral proteins (12, 22). The arenavirus envelope glycoprotein, GPC, is a member of the class I virus fusion proteins (33, 40, 75), a group that includes HIV Env, influenza virus hemagglutinin (HA), and paramyxovirus F protein. These envelope glycoproteins share several salient features. The precursor glycoproteins assemble as trimeric complexes and are subsequently rendered competent for membrane fusion by a proteolytic cleavage that results in the formation of the mature receptor-binding and transmembrane fusion subunits. The GPC precursor glycoprotein is cleaved by the cellular SKI-1/S1P protease (6, 51, 54) to generate the respective G1 and G2 subunits, which remain noncovalently associated. The ectodomain of the class I fusion subunit is distinguished by the presence of two 4-3 heptad repeat (HR1 and HR2) sequences that, in the course of membrane fusion, refold to form the now-classical six-helix bundle structure, which defines this class of envelope glycoproteins. Unlike other class I fusion proteins, GPC also contains a cleaved and stable signal peptide (SSP) as a third and essential subunit in the mature complex (2, 32, 69, 77, 81).Arenavirus infection is initiated by G1 binding to a cell surface receptor. The pathogenic clade B New World arenaviruses utilize transferrin receptor 1 (TfR1) for entry (1, 64, 65), whereas those in clades A and C, as well as the Old World viruses, bind α-dystroglycan and/or an unknown receptor (15, 34, 71). The virion particle is subsequently endocytosed (9), and membrane fusion is initiated by acidification in the maturing endosome (17, 28, 29). pH-dependent activation of GPC is modulated through a unique interaction between SSP and G2 (79, 80) and can be targeted by small-molecule inhibitors that block membrane fusion (76) and protect against arenavirus infection (8, 52).A generally accepted model for membrane fusion by the class I envelope glycoproteins (reviewed in references 45 and 73) posits that the native complex exists in a metastable state that is established on proteolytic maturation of the biosynthetic precursor. Upon activation, whether by acidic pH in the endosome or receptor binding at the plasma membrane, the fusion subunit that was sequestered in the prefusion state is exposed and undergoes a series of dramatic conformational changes leading to membrane fusion. In this process, a hydrophobic region at or near the N terminus of the fusion subunit (the fusion peptide) inserts into the host cell membrane, thus allowing the protein to bridge the two membranes. This so-called prehairpin intermediate subsequently collapses upon itself to form the highly stable six-helix bundle structure, in which the three HR2 helices pack into hydrophobic grooves on the trimeric HR1 coiled-coil in an antiparallel manner, bringing the virus and cell membranes into apposition. Free energy made available in the formation of this stable structure is thought to drive fusion of the lipid bilayers. Peptides that correspond in sequence to HR2 (C-peptides) bind to the putative prehairpin intermediate and interfere with its refolding, thereby preventing membrane fusion (18, 57, 74). While the structure of the six-helix bundle core has been elucidated in atomic detail (45, 73), information regarding the molecular pathway leading to this postfusion state is largely indirect. Indeed, the prehairpin intermediate is conceptualized through the activity of C-peptide fusion inhibitors (57, 74).In this report, we describe a G2-directed monoclonal antibody (MAb), F100G5, that recognizes a pH-induced intermediate of JUNV GPC and prevents GPC-mediated membrane fusion. This MAb binds at or near the internal fusion peptide of G2 and may act by interfering with its penetration into the host cell membrane. These studies highlight the feasibility of targeting short-lived GPC intermediates for inhibition of membrane fusion.  相似文献   

2.
Cells expressing the hemagglutinin protein of influenza virus were fused to planar bilayer membranes containing the fluorescent lipid probes octadecylrhodamine (R18) or indocarbocyanine (DiI) to investigate whether spontaneous curvature of each monolayer of a target membrane affects the growth of fusion pores. R18 and DiI lowered the transition temperatures for formation of an inverted hexagonal phase, indicating that these probes facilitate the formation of negative curvature structures. The probes are known to translocate from one monolayer of a bilayer membrane to the other in a voltage-dependent manner. The spontaneous curvature of the cis monolayer (facing the cells) or the trans monolayer could therefore be made more negative through control of the polarity of voltage across the planar membrane. Electrical admittance measurements showed that the open times of flickering fusion pores were shorter when probes were in trans monolayers and longer when in cis monolayers compared with times when probe was symmetrically distributed. Open times were the same for probe symmetrically distributed as when probes were not present. Thus, open times were a function of the asymmetry of the spontaneous curvature between the trans and cis monolayers. Enriching the cis monolayer with a negative curvature probe reduced the probability that a small pore would fully enlarge, whereas enriching the trans monolayer promoted enlargement. Lysophosphatidylcholine has positive spontaneous curvature and does not translocate. When lysophosphatidylcholine was placed in trans leaflets of planar membranes, closing of fusion pores was rare. The effects of the negative and positive spontaneous curvature probes do not support the hypothesis that a flickering pore closes from an open state within a hemifusion diaphragm (essentially a “flat” structure). Rather, such effects support the hypothesis that the membrane surrounding the open pore forms a three-dimensional hourglass shape from which the pore flickers shut.  相似文献   

3.
Studies of viral entry into host cells often rely on the detection of post-entry parameters, such as viral replication or the expression of a reporter gene, rather than on measuring entry per se. The lack of assays to easily detect the different steps of entry severely hampers the analysis of this key process in virus infection. Here we describe novel, highly adaptable viral entry assays making use of minimal complementation of the E. coli β-galactosidase in mammalian cells. Enzyme activity is reconstituted when a small intravirion peptide (α-peptide) is complementing the inactive mutant form ΔM15 of β-galactosidase. The method allows to dissect and to independently detect binding, internalization, and fusion of viruses during host cell entry. Here we use it to confirm and extend current knowledge on the entry process of two enveloped viruses: vesicular stomatitis virus (VSV) and murine hepatitis coronavirus (MHV).  相似文献   

4.
The 3' terminal nucleosides of the isolated components of double-stranded ribonucleic acids of reovirus, wound tumor virus, and cytoplasmic polyhedrosis virus were determined by labeling with tritiated sodium borohydride. All wound tumor virus and cytoplasmic polyhedrosis virus components appear to contain approximately equal amounts of U(OH) and C(OH) termini. Reovirus segments have essentially only C(OH) termini.  相似文献   

5.
Progressive pneumonia virus, the causative agent of a slow, pulmonary disease of Montana sheep, was shown to be antigenically related to two other slow viruses of sheep, visna and maedi. Electron microscopic examination of infected cells revealed that the virus matures by a budding process and that the budding particles as well as the mature, extracellular virions bear striking resemblances to the oncogenic ribonucleic acid (RNA) viruses. Recent findings of an RNA-dependent deoxyribonucleic acid polymerase associated with the virions of this group of slow viruses lend further support to the notion that they may tentatively be classified with the oncogenic RNA tumor viruses.  相似文献   

6.
Visna and progressive pneumonia virus (PPV), two antigenically related, non-oncogenic "slow viruses" which have ribonucleic acid (RNA)-dependent deoxyribonucleic acid (DNA) polymerase activity, were examined for their ability to transform cells. Murine cells which had been exposed to either visna or PPV developed foci of altered, spindle-shaped cells 3 to 4 weeks after infection. Visna and PPV transformed lines were established from these cultures. There was no evidence that other oncogenic DNA or RNA viruses were involved in the observed transformation. Visna or PPV could be "rescued" from all transformed lines by co-cultivation with normal sheep testis cells. "Rescued" virus was identified as visna or PPV, and they retained the capacity to transform mouse cells. These experiments may have important implications in the understanding of both viral carcinogenesis and "slow" viral infections.  相似文献   

7.
Ionizing radiation, beta-propiolactone, and acetylethyleneimine were compared for their ability as virus-inactivating agents for the preparation of rabies vaccine. Each agent reduced viral infectivity exponentially; ionizing radiation also destroyed viral hemagglutinin. The vaccine prepared by ionizing radiation was equal or superior to that prepared by beta-propiolactone in its ability to protect mice from rabies infection. The acetylethyleneimine-treated vaccine was a less potent immunogen.  相似文献   

8.
Lang T  Jahn R 《Developmental cell》2002,2(3):257-259
In the February 8th issue of Cell, Wang et al. report the surprising finding that vacuolar fusion occurs at the periphery of the contact area of the vacuoles and not by the expansion of a central fusion pore. During fusion, a disk of boundary membrane is excised and left behind within the fused vacuoles.  相似文献   

9.
The products of complete digestion of duplex DNA of each of seven human adenoviruses with restriction endonuclease R. EcoRI ranged from two fragments for adenovirus 7 DNA (Ad7) to six fragments for Ad12 and Ad2 DNA. Viral serotypes from the same subgroups appeared to have related cleavage sites; Ad3 DNA and Ad7 (cl E46-LL) DNA were each cleaved into three fragments, and Ad7 (cl 19) DNA lacked one of the cleavage sites present in Ad3 and Ad7 (cl E46-LL) DNA. One of the cleavage sites in Ad2 DNA was deleted in the DNA' of adeno-SV40 hybrid virus Ad2(+)ND1, and three of the cleavage sites in Ad2 DNA were missing in Ad5 DNA. Thus, Ad2(+)ND1 DNA was cleaved into five and Ad5 DNA into three fragments. Each fragment represented a unique segment of viral DNA since each fragment was obtained in equimolar amounts and since the sum of the molecular weights of the fragments equaled the molecular weight of the homologous intact adenovirus DNA.  相似文献   

10.
Zhan J  Chen Y  Yuan HY  Li H  Lu H 《Biotechnology letters》2012,34(3):417-423
Soluble human tumor necrosis factor receptors (shTNFRI and shTNFRII) are antagonists of tumor necrosis factor-α (TNF-α) and are under clinical investigation as therapy for autoimmune diseases and transplant rejection. However, shTNFRI and shTNFRII are limited for clinical usage because of their short half-lives in vivo. Recombinant TNF-α receptors (infliximab and etanercept) are used in treatment of rheumatoid arthritis and Crohn’s disease but are also being tested for a number of other autoimmune diseases. Human serum albumin (HSA) has been used to construct long-acting fusion proteins. Here, we report the effect of fusion of HSA with shTNFRI and with shTNFRII on shTNFR’s neutralizing activity against TNF-α. HSA fusion proteins were separately expressed in Pichia pastoris. Purified recombinant shTNFRI-HSA, HSA-shTNFRI and HSA-shTNFRII could block the cytolytic activity of TNF-α in L929 cells, and the fusion at N-terminus of shTNFRI could result in larger degree of activity decline than that at the C-terminus. Activity of three fusion proteins was much weaker than etanercept, which demonstrated that fusion of HSA significantly influenced TNF-α neutralizing activity of shTNFRs. Compared with Fc fragment, HSA fusion technology may therefore not be an ideal strategy in development of long-acting shTNFRs protein drugs.  相似文献   

11.
ABSTRACT

For the purpose of determining the immunogenic potency of polio virus, relatively large amounts of concentrated virus material were prepared which had titres of the order of 1010 T.C.I.D.jo per ml. These were obtained by pervaporating large quantities of tissue culture fluid containing approximately 1065 T.C.I.D.JQ per ml.  相似文献   

12.
The biological properties (infectivity, hemagglutination, hemolysis, cell fusion, neuraminidase) of Sendai virus were dissociated on the basis of sensitivity to beta-propiolactone, by freeze-thawing, by heating at different temperatures, and by adsorption-elution with formalinized chicken erythrocytes. Possible mechanisms whereby beta-propiolactone selectively destroys viral infectivity are discussed.  相似文献   

13.
Viruses have demonstrated strong potential for the therapeutic targeting of glioblastoma stem cells (GSCs). In this study, the use of a herpes simplex virus carrying endostatin–angiostatin (VAE) as a novel therapeutic targeting strategy for glioblastoma-derived cancer stem cells was investigated. We isolated six stable GSC-enriched cultures from 36 human glioblastoma specimens and selected one of the stable GSCs lines for establishing GSC-carrying orthotopic nude mouse models. The following results were obtained: (a) VAE rapidly proliferated in GSCs and expressed endo–angio in vitro and in vivo 48 h and 10 d after infection, respectively; (b) compared with the control gliomas treated with rHSV or Endostar, the subcutaneous gliomas derived from the GSCs showed a significant reduction in microvessel density after VAE treatment; (c) compared with the control, a significant improvement was observed in the length of the survival of mice with intracranial and subcutaneous gliomas treated with VAE; (d) MRI analysis showed that the tumor volumes of the intracranial gliomas generated by GSCs remarkably decreased after 10 d of VAE treatment compared with the controls. In conclusion, VAE demonstrated oncolytic therapeutic efficacy in animal models of human GSCs and expressed an endostatin–angiostatin fusion gene, which enhanced antitumor efficacy most likely by restricting tumor microvasculature development.  相似文献   

14.
The henipaviruses, represented by Nipah virus and Hendra virus, are emerging zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These viruses enter host cells via a class I viral fusion mechanism mediated by their attachment and fusion envelope glycoproteins; efficient membrane fusion requires both these glycoproteins in conjunction with specific virus receptors present on susceptible host cells. The henipavirus attachment glycoprotein interacts with a cellular B class ephrin protein receptor triggering conformational alterations leading to the activation of the viral fusion (F) glycoprotein. The analysis of monoclonal antibody (mAb) reactivity with G has revealed measurable alterations in the antigenic structure of the glycoprotein following its binding interaction with receptor. These observations only appear to occur with full-length native G glycoprotein, which is a tetrameric oligomer, and not with soluble forms of G (sG), which are disulfide-linked dimers. Single amino acid mutations in a heptad repeat-like structure within the stalk domain of G can disrupt its association with F and subsequent membrane fusion promotion activity. Notably, these mutants of G also appear to confer a postreceptor bound conformation implicating the stalk domain as an important element in the G glycoprotein's structure and functional relationship with F. Together, these observations suggest fusion is dependent on a specific interaction between the F and G glycoproteins of the henipaviruses. Further, receptor binding induces measurable changes in the G glycoprotein that appear to be greatest in respect to the interactions between the pairs of dimers comprising its native tetrameric structure. These receptor-induced conformational changes may be associated with the G glycoprotein's promotion of the fusion activity of F.  相似文献   

15.
16.
The acute phases of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection are characterized by rapid and profound depletion of CD4+ T cells from the guts of infected individuals. The large number of CD4+ T cells in the gut (a large fraction of which are activated and express the HIV/SIV coreceptor CCR5), the high level of infection of these cells, and the temporal coincidence of this CD4+ T-cell depletion with the peak of virus in plasma in acute infection suggest that the intestinal mucosa may be the major source of virus driving the peak viral load. Here, we used data on CD4+ T-cell proportions in the lamina propria of the rectums of SIV-infected rhesus macaques (which progress to AIDS) and sooty mangabeys (which do not progress) to show that in both species, the depletion of CD4+ T cells from this mucosal site and its maximum loss rate are often observed several days before the peak in viral load, with few CD4+ T cells remaining in the rectum by the time of peak viral load. In contrast, the maximum loss rate of CD4+ T cells from bronchoalveolar lavage specimens and lymph nodes coincides with the peak in virus. Analysis of the kinetics of depletion suggests that, in both rhesus macaques and sooty mangabeys, CD4+ T cells in the intestinal mucosa are a highly susceptible population for infection but not a major source of plasma virus in acute SIV infection.The acute phase of human immunodeficiency virus (HIV) infection is characterized by moderate CD4+ T-cell depletion in blood, followed by a transient partial restoration of CD4+ T-cell numbers and eventually by a slow long-term CD4+ T-cell decline in the chronic phase that lasts for several years. Studies of CD4+ T-cell depletion in mucosal sites, often conducted with simian immunodeficiency virus (SIV)-infected macaques, have demonstrated that mucosal CD4+ T-cell depletion is more rapid and profound (3, 10, 13, 19, 21). The severe depletion of cells in the gut in early infection is thought to be driven in part by the phenotype of the cells present, which are predominantly CCR5+ and in general more activated than their circulating counterparts. As such, these mucosal CD4+ T cells are highly susceptible to productive infection with the dominant CCR5-tropic strains of HIV and SIV present in early infection (20). The rapid depletion of CD4+ T cells at mucosal sites is accompanied by relatively high numbers of infected cells (10, 13) and is temporally associated with the peak viral load in plasma, suggesting that the infection of mucosal CD4+ T cells may be responsible for the majority of virus replication occurring during acute infection (10, 15, 21, 22).The size of the CD4+ T-cell pool in the gut is a matter of some controversy, with estimates ranging from ∼5 to 50% of the total body pool of these cells (reviewed in reference 5). Regardless of the precise numbers, the gut (and particularly the mucosal lamina propria) contains a significant proportion of the body CD4+ CCR5+ memory T cells, which are depleted very early in infection. However, whether CD4+ T cells in the gut are merely a target of early infection or whether they are a major driver of early viral growth and peak viral loads in acute infection is unclear. Here we use a combination of experimental data and modeling to demonstrate that the gut is unlikely to be a major source of virus production in acute SIV infection.  相似文献   

17.
Abstract

The peptide HIVarg, corresponding to a sequence of 23 amino acid residues at the N-terminus of HIV-1 gp41, has the capacity to induce fusion of large unilamellar vesicles (LUV) consisting of negatively charged or zwitter-ionic phospholipids. In the present study, we further characterize this destabilization and fusion process using LUV consisting of phosphatidylcholine, phosphatidylethanolamine and cholesterol (molar ratio, 1:1:1). Evidence for fusion includes a demonstration of membrane lipid mixing as well as mixing of aqueous vesicle contents. Kinetic analysis of the overall process of vesicle aggregation and fusion revealed that the rate constant of the fusion step per se increased dramatically with the peptide-to-lipid molar ratio, indicating that the peptide acts as a true fusogen. The peptide caused the release of small molecules (Ants/DPX), whereas large solutes (Fitc-dextran, MWav 19,600) were partly retained. The estimated critical number of peptides per vesicle necessary to release vesicle contents, M = 2-4, indicates that leakage does not involve the formation of classical pores. Infrared spectroscopy of the peptide in the presence of liposomes demonstrated that the equilibrium conformation of the membrane-bound peptide is an antiparallel β-structure. This finding supports the notion that the HTV fusion peptide in a β-conformation has the capacity to perturb vesicle bilayers, inducing initial permeabilization and subsequent membrane fusion.  相似文献   

18.
19.
An extensive water sample survey was conducted in southern Ontario, Canada across a variety of freshwater systems in order to further understand the role of viruses in aquatic environments. Backwards stepwise multiple regression analysis found that VLP (virus-like particle) abundance, phosphate, pH, sulfate, and magnesium are predictors of prokaryotic abundance with the model describing 90% of the variability in the data (R2 = 0.90). Statistically significant (P < 0.05) predictors of VLP abundance were mineral saturation indices (SI) of goethite (R2 = 0.78) although moderate Pearson component analysis correlations (r) were noted with ferrihydrite, jarosite, and pyrolusite. These relationships indicate that viral inactivation through mineral attachment may be a contributor to the moderate relationship between VLP and prokaryotic abundance (rs = 0.45). In addition, VLP abundance is shown to have a stronger correlation with minerals SI values than prokaryotes indicating a stronger mineral influence with viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号