首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dorsal surface of the holothurioid Holothuria forskali bears several longitudinal rows of modified podia called papillae. Each papilla consists of a conical stem topped by an hemispherical bud. Their gross tissue stratification is the same all along the papilla being made up of four tissue layers, viz. an inner mesothelium, a connective tissue layer, a nerve plexus and an outer epidermis. The latter is differently organized according to whether it belongs to the stem or to the bud. The epidermis of the bud is built up by ciliated cells that intimately contact the nerve plexus and have the classical structure of echinoderm sensory cells. The papillae are thus sensory organs involved in mechanoreception and possibly chemoreception.  相似文献   

2.
Mucous consists of glycoproteins and proteoglycans produced by specific secretory cells (mucocytes). In anurans the cutaneous mucous is produced by intradermal glands and displays both mechanical and chemical protection functions. Indeed, mucous maintains the integument moist and facilitates gas exchange (cutaneous respiration). In this work, the carbohydrate moiety distribution was investigated in the integument of Bufo ictericus using conventional and lectin histochemistry to describe the pattern of cutaneous glycoconjugate expression, including both secretory and structural proteoglycans. As a preliminary step, the descendent chromatography in Whatmann 1MM paper was undertaken to prepare the histochemical trials involving the lectins. In B. ictericus, the integument exhibits the basic morphological structure found in lower terrestrial vertebrates: the epidermis is a keratinized squamous stratified epithelium supported by spongious and compact layers. The spongy dermis contain secretory portion of both mucous and serous (or poison) glands. The paper chromatography identified galactose, fucose and mannose as characteristic sugar residues. The secretory cells of the mucous gland in the dermis, as well as the interstice between the stratum corneum and the subjacent stratum spinosum in the epidermis exhibit alpha-l-fucose and alpha-galactose residues. The serous glands give no reaction. The alpha-mannose residue was detected in the extracellular matrix of spongious dermis, but not in the dermal glands. The different glycoconjugate location reflects in two glycoconjugates categories: the secretory which participate in the water flow regulation, and the structural which is involved in the dermal maintenance.  相似文献   

3.
The integument of the colonial species Barentsia discreta has been investigated in the present work. On its greater length the integument is presented by a monolayered unciliated epithelium covered by a layer of microvillar cuticle. The floor of the atrial cavity and the frontal surface of tentacles is lined by ciliated epidermis covered by a protocuticle. Sensitive and secretory cells are present in the epidermis.  相似文献   

4.
The larva of Loxosoma pectinaricola Franzén has been studied using scanning and transmission electron microscopy. The embryo develops surrounded by an egg envelope attached to the brood chamber. The newly released larva measures about 100 μm in length and is characterized by a prominent apical organ, stalked vesicles, paired lateral sense organs and a prototroch. The apical organ consists of at least four cell types: (1, 2) two types of ciliated cells, (3) vacuolated cells and (4) myoepithelial cells. The apical organ and frontal ganglion are tightly juxtaposed in the upper tier of the episphere. The stalked vesicles each consisting of two cells are unique evaginations of the epidermis. There are about twenty stalked vesicles with a maximum diameter of about 20.0 μm. The ciliated, knob-shaped, paired lateral sense organs are situated fronto-laterally on the episphere. The prototroch is comprised of a row of contiguous prototroch cells each containing about eighteen long cilia. The apical organ, frontal ganglion and paired lateral sense organs are suggested to be sensory structures that play an important role in active locomotion, settlement site selection and metamorphosis.  相似文献   

5.
The occurrence of intermediate-sized filaments containing prekeratin-like proteins ('cytokeratins') has been examined in various organs of rat and cow by electron microscopy and by immunofluorescence microscopy on frozen sections using antibodies to defined constitutive proteins of various types of intermediate-sized filaments (prekeratin, vimentin, desmin). Positive cytokeratin reaction and tonofilament-like structures have been observed in the following epithelia: epidermis; ductal, secretory, and myoepithelial cells of sweat glands; mammary gland duct; myoepithelial cells of lactating mammary gland; milk secreting cells of cow; ductal, secretory, and myoepithelial cells of various salivary glands; tongue mucosa; bile duct; excretory duct of pancreas; intestinal mucosa; urothelium; trachea; bronchi; thymus reticulum, including Hassall corpuscles; mesothelium; uterus; and ciliated cells of oviduct. None of the epithelial cells mentioned has shown significant reaction with antibodies to vimentin, the major component of the type of intermediate-sized filaments predominant in mesenchymal cells. The widespread, if not general occurrence of cytokeratin filaments in epithelial cells is emphasized, and it is proposed to use this specific structure as a criterion for true epithelial character or origin.  相似文献   

6.
Summary The osphradium of Planorbarius consists of a blindly-ending ciliated canal, formed by an infolding of the mantle epithelium, and a basal ganglion of nerve cells which is comparable in complexity with ganglia of the central nervous system. The distribution of cell types in the osphradial epithelium is specialised so that three regions can be recognised; the ciliated, the secretory and the sensory regions. The basal sensory region of the canal epithelium consists of ciliated cells and is innervated by sensory neurones of the osphradial ganglion. The middle secretory region contains mainly of mucus-secreting cells and the epithelium adjacent to the osphradial aperture of ciliated cells and secretory cells of a second type. The sensory neurones of the osphradial ganglion are bipolar or of a modified monopolar type. Other monopolar neurones, similar to those common in the central nervous system are of non-sensory function. The osphradium of Paludina, although of typical prosobranch form, possesses ciliated pits similar to the single canal of Planorbarius, which may indicate a shared modality of receptor function. A definite function cannot be ascribed to the pulmonate osphradium based on morphological evidence alone.  相似文献   

7.
The skins of crocodylids and gavialids can be distinguished from those of alligatorids by the presence of darkly pigmented pits, known as integumentary sense organs (ISOs), on the postcranial scales. The structure of ISOs, in Crocodylus porosus, was studied using light microscopy and scanning and transmission electron microscopy. The stratum corneum of the epidermis in the area of the ISO is thinner, while the stratum germinativum is thicker, relative to other regions of the integument. Beneath the epidermal layer the ISO region has a paucity of collagen fibers relative to the rest of the dermis. Widely dispersed fibrocytes, nerve terminals, and chromatophores occur throughout the ISO region of the dermis, but these elements are concentrated in the area immediately beneath the stratum germinativum in the ISO region. The morphology of the ISOs suggests that they are sensory organs. It has traditionally been assumed that sensory organs on the amniote integument have a mechanosensory function. However, alternate functional interpretations of this structure are possible, and a resolution awaits further work. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Summary Two pairs of ganglia are found in the propodial region of the veliger of Onchidoris bilamellata: the anterolateral pair is located at the foremost corners of the propodium, and the frontal pair is located beside the propodial midline. Both sets of ganglia are positioned below the epidermis, and they are joined to the cerebral ganglia by large, common connectives. Each ganglion possesses sensory cells, nerve cells and sheath cells, and the frontal pair contains a complement of secretory cells. Externally, the propodial ganglia are manifested as sensory fields. The fields of the anterolateral pair are elliptical in shape, and each appears as a band of cilia bordering an unciliated zone. The region devoid of cilia is composed of ordinary epidermal cells, whereas the ciliated portion is comprised of dendritic endings originating from cells in the ganglion. Dendrites arise from one type of sensory cell and pass through the epidermis in bundles. Each dendrite terminates as a single cilium at the epidermal surface. Sensory fields of the frontal ganglia are key-shaped and oppose one another on the anterior end of the foot. Each field appears as a flat, circular, unciliated region which extends into a ciliated groove that runs dorsally toward the mouth. The groove contains the terminals of secretory cells, ciliated sensory cells, and the cell bodies of nonciliated sensory cells. The nonciliated sensory cells, characterized by a microvillous apex, are the dominant cells in the flattened circular zone. The space between the frontal ganglia and the epidermis is bridged by bundles of processes which are similar to those of the anterolateral ganglia. However, these tracts contain collections of the apical processes of secretory cells, the dendrites of ciliated sensory cells, and the axons of nonciliated sensory cells. Morphological and behavioral evidence indicates that the propodial ganglia serve a chemosensory function during settlement and metamorphosis.  相似文献   

9.
Abstract. We examined the nuchal organs of adults of the nereidid polychaete Platynereis dumerilii by means of scanning and transmission electron microscopy. The most prominent features of the nuchal organs are paired ciliary bands located dorsolaterally at the posterior margin of the prostomium. They are composed of primary sensory cells and multiciliated supporting cells, both covered by a thin cuticle. The supporting cells have motile cilia that penetrate the cuticle and are responsible for the movement of water. Subapically, they have a narrowed neck region; the spaces between the neck regions of these supporting cells comprise the olfactory chamber. The dendrites of the sensory cells give rise to a single modified cilium that crosses the olfactory chamber; numerous thin microvillus-like processes, presumably extending from the sensory cells, also traverse the olfactory chamber. At the periphery of the ciliated epithelium runs a large nervous process between the ciliated supporting cells. It consists of smaller bundles of sensory dendrites that unite to form the nuchal nerve, which leaves the ciliated epithelium basally and runs toward the posterior part of the brain, where the perikarya of the sensory cells are located in clusters. The ciliated epithelium of the nuchal organs is surrounded by non-ciliated, peripheral epidermal cells. Those immediately adjacent to the ciliated supporting cells have a granular cuticle; those further away have a smooth cuticle. The nuchal organs of epitokous individuals of P. dumerilii are similar to those described previously in other species of polychaetes and are a useful model for understanding the development of nuchal organs in polychaetes.  相似文献   

10.
The integument of the paddlefish (Polyodon spathula) is unusual as a relatively small amount of mucus is produced by epithelial cells that are not modified into regular mucous gland cells. A thick compact epidermis and dermis compensate for the slight amount of mucus secreted. Paddlefish have a variety of scales formed of concentric bony lamellae containing osteocytes. There are five kinds of scales: dorsal and ventral fulcra on the caudal fin, rhomboidal scales on the caudal lobe, horny denticles over the pectoral girdle, calcareous denticles on the trunk, and anchor-shaped plates on the rostrum. Except for the fulcra, the scales are undoubtedly vestigial. The numerous surface pits on the rostrum, head, operculum, and throat are epithelial invaginations which are not connected to lateral line canals. No nerves lead to the pits. The spherical to cuboidal and often ciliated cells at the base of the pits are considered to be aplasic cells of unformed neuromasts.  相似文献   

11.
The structural differentiation of the nuchal organs during the post-embryonic development ofPygospio elegans is described. The sensory organs are composed of two cell types: ciliated cells and bipolar primary sensory cells, constituting the nuchal ganglion, which is associated with both the sensory epithelium and the brain. Since the sensory neurons are largely integrated into posterolateral parts of the cerebral ganglion, the nuchal organs are primary presegmental structures. The microvilli of the ciliated cells form a cover over the cuticle with a presumed protective function. An extracellular space extends between cuticle and sensory epithelium. The distal dendrites of the sensory cells terminate in sensory bulbs, bearing one modified sensory cilium each that projects into the olfactory chamber, embedded within the secretion of the ciliated cells. During development, the nuchal organs increase in size. This is accompanied by a shift in position, an expansion of the sensory area, and secretory activity of the ciliated cells. The nuchal ganglion differentiates into three nuchal centres forming three distinct sensory areas around the ciliated region. Each nuchal complex reveals two short nuchal nerves comprising the sensory axons, which enter the posterior circumesophageal connective. The sensory cells lying in the brain exhibit neurosecretory activity; the sensory cilia enlarge their surface area by dilating and branching. Nuchal organs accomplish the basic structural adaptions of chemoreceptors and show structural analogies to arthropod olfactory sensilla; thus, there is every reason to suppose chemoreceptor function.  相似文献   

12.
Daniela Uthe 《Hydrobiologia》1995,309(1-3):45-52
The cephalic sensory organ (CSO) in planktonic veliger larvae of Littorina littorea is situated dorsally between the velar lobes at the level of the shell aperture. It consists of ciliated primary sensory cells, adjacent accessory cells and supporting epithelial cells. Cell bodies of the ciliated cells originate in the cerebral commissure and their dendrites pass to the epidermis. The flask-shaped sensory cells are characterized by a deep invaginated lumen with modified cilia arising from the cell surface in the lumen. These cilia are presumed to be non-motile because they lack striated rootlets and show a modified microtubular pattern (6 + 2, 7 + 2 and 8 + 2). The adjacent accessory cells never possess an invaginated lumen; occasionally cilia and branched microvilli arise from the apical surface. These cells may be sensory, but there is no obvious direct connection with the nervous system. The supporting epithelial cells are part of the epidermis and flank the apical necks of the sensory and accessory cells. Morphological evidence suggests that the CSO may function in chemoreception related to substrate selection at settlement, feeding or other behaviour.  相似文献   

13.
The structure and fate of transitory larval organs (velum, shell, operculum, retractor muscles, part of the epidermis) of Phestilla sibogae Bergh were studied before, during, and after metamorphosis with both light and electron microscopy to elucidate the morphology of these organs and the mechanisms by which they are lost.Loss of the velar lobes is the first morphological sign of metamorphosis, and involves selective dissociation and subsequent ingestion of the ciliated velar cells; the remaining aggregate of supportive cells is apparently incorporated into cephalic epidermis. Attachment of the larval body to shell and operculum is primarily at sites of retractor muscle insertions; once the velum is gone, the attachment between shell and larval body is lost and the shell is cast off as the visceral organs exit through the shell aperture. Merger of visceral and cephalopedal elements results in flattening of the postlarval body and reorientation of internal organs. Simultaneously, a rapid spreading of epipodial epidermis over the lateral, dorsal, and posterior sides of the body produces the definitive integument. The squamous cells which comprise the larval perivisceral epidermis are pushed ahead of the definitive epidermis and are seen shortly after the shell is cast as a constricted aggregate of cells on the posterior end of the body. Autolysis of the left and right retractor muscles begins during metamorphosis and no trace of them is left after 24 to 48 h. The metapodial mucous glands which hypertrophy before metamorphosis are also lost within 48 h following exit of the post larva from the shell. Metamorphosis produces a detorsion caused in part by muscular action and in part by continuing growth and development.  相似文献   

14.
The epidermis of the tentacles of Phoronis australis consists of six cell types: supporting cells, choanocyte-like sensory cells, both types monociliated, secretory A-cells with a mucous secretion, and three kinds of B-cells with mucoprotein secretions. On cross-sections of the tentacle, one can distinguish four faces: the frontal one, heavily ciliated and located between the two frontolateral rows of sensory cells, the lateral and the abfrontal ones. The orientation of the basal structures of the cilia is related to the direction of their beat. The basiepidermal nervous system is grouped mainly at the frontal and abfrontal faces. The basement membrane is thickest on the frontal face and consists of circular collagen fibrils near the epidermis and longitudinal ones near the peritoneum. All peritoneal cells surrounding the mesocoel are provided with smooth longitudinal myofibrils, and isolated axons are situated between these cells and the basement membrane. The wall of the single blood capillary in each tentacle consists of epitheliomuscular cells with circular myofilaments, lying on a thin internal basal lamina; there is no endothelium.  相似文献   

15.
By removing epidermis with EDTA and a subsequent enzymatic digestion of dermis, eccrine sweat glands of rat fingertips were exposed and examined by scanning electron microscopy (SEM). Different protocols were tested to remove as much connective tissue as possible, while minimizing damage to other structures, and to expose the epithelial surface of secretory tubules in order to display vascular and nervous networks. SEM observations gave detailed information on the relationship between epithelial secretory cells and myoepithelial cells, as well as on the vascular and nervous networks which surround the glomeruli of glands.  相似文献   

16.
The ampullary organs of the bichir were examined by light and electron microscopy. Unlike most other ampullary organs, they are exclusively found in the epidermis and are never sunk into the subepidermal connective tissue. The sensory epithelium consists of sensory cells and supporting cells surrounded by mantle cells. The luminal surface of the sensory cell is provided with a cilium surrounded by several microvilli. In the apical cytoplasm are found numerous mitochondria and microtubules. In the basal part of the cell synaptic sheets or synaptic bodies opposite to afferent nerve endings are frequent.  相似文献   

17.
The present study demonstrates the distribution of transferrin and the transferrin receptor in the integument of eleven wild mammalian species using immunohistochemical methods. Both substances were regularly found in or near the peripheral cells of the sebaceous glands, especially of dense-haired animals. The transferrin receptor was also detectable in the epidermis, the secretory portion of tubular apocrine glands, and the outer epithelium of primary hair follicles. Transferrin as well as the transferrin receptor reacted strongly in macrophages of the papillary dermis only in the common seal. The results obtained are discussed with regard to possible biological functions in the skin of the substances demonstrated. Keywords: immunohistochemistry, integument, mammals, transferrin, transferrin receptor  相似文献   

18.
The attachment complex of brachiolaria larvae of the asteroid Asterias rubens comprises three brachiolar arms and an adhesive disc located on the preoral lobe. The former are used in temporary attachment and sensory testing of the substratum, whereas the latter is used for permanent fixation to the substratum at the onset of metamorphosis. Brachiolar arms are hollow structures consisting of an extensible stem tipped by a crown of dome-like ciliated papillae. The papilla epidermis is composed of secretory cells (type A, B and C cells), non-secretory ciliated cells, neurosecretory-like cells and support cells. Type A and B secretory cells fill a large part of the papilla epidermis and are always closely associated. They presumably form a duo-gland adhesive system in which type A and B cells are respectively adhesive and de-adhesive in function. The adhesive disc is an epidermal structure mainly composed of secretory cells and support cells. Secretory cells produce the cement, which anchor the metamorphic larva to the substratum until the podia are developed. The relatedness between the composition of the adhesive material in the brachiolaria attachment complex and in the podia of adults was investigated by immunocytochemistry using antibodies raised against podial adhesive secretions of A. rubens. Type A secretory cells were the only immunolabelled cells indicating that their temporary adhesive shares common epitopes with the one of podia. The attachment pattern displayed by the individuals of A. rubens during the perimetamorphic period—temporary, permanent, temporary—is unique among marine non-vertebrate Metazoa.  相似文献   

19.
The dorsal and ventral skin in amphibians plays an important role in osmoregulation. Prolactin hormone is involved in regulation of amphibian skin functions, such as water and electrolyte balance. Therefore, amphibians may be useful as a model for determining the sites of the prolactin receptor. In this study, prolactin receptor was detected in frog dorsal and ventral skin using immunohistochemical staining method. Prolactin receptor immunoreactivity was localized in all epidermal layers except stratum corneum of dorsal skin epidermis, stratum germinativum layer of ventral skin epidermis, myoepithelial cells, secretory epithelium and secretory channel cells of granular glands in both skin regions. The mucous glands and secretory granules of granular glands did not show immunoreactivity for the prolactin receptor. According to our immunohistochemical results, the more widespread detection of prolactin receptor in dorsal skin epidermis indicates that prolactin is more effective in dorsal skin. Presence of prolactin receptors in epidermis points out its possible osmoregulatory effect. Moreover, detection of receptor immunoreactivity in various elements of poison glands in the dermis of both dorsal and ventral skin regions suggests that prolactin has a regulatory effect in gland functions.  相似文献   

20.
The fine structure of the heart and connective tissue sheath surrounding the stomach of the brachiopod Rhynchonella psittacea has been studied. The stomach wall is lined externally with peritoneal epithelium. Between the bases of the peritoneal epithelial cells and those of the stomach epithelial cells is an extracellular amorphous matrix. The exterior part of the matrix is occupied by smooth muscle cells and the interior part by fibroblasts. The heart wall shows continuity with the peritoneal epithelium covering the stomach wall and consists of three layers: an outer layer of smooth myoepithelial and epithelial cells, an intermediate thick layer of extracellular matrix, and an inner discontinuous layer of fibroblasts. In myoepithelial cells, nucleated heads protruding freely into the coelom and contractile parts embedded in the extracellular matrix can easily be distinguished. These cells contain no sarcoplasmic reticulum or any elements of a T system. The epithelial cells are non-muscular mononucleated cells scattered among the myoepithelial cells and closely associated with these basally. They possess a well-developed rough endoplasmic reticulum. In rare cases, a small amount of myofibrils occurs basally in the epithelial cells. Morphologically the epithelial cells in the myocardium are very similar to the peritoneal epithelial cells covering the stomach wall. Both epithelial and myoepithelial cells are ciliated. No nerve elements have been found in the brachiopod heart. The structure of the brachiopod heart is compared with that of other invertebrates; similarity of cellular composition of the brachiopod heart and stomach cover is considered evidence of origin of the heart cells from the cells of the connective tissue sheath of the stomach. The myogenic role of the peritoneal cells and epithelial cells of the myocardium is suggested. J. Morphol. 234:69–77, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号