首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A detailed functional characterization of reconstituted sarcoplasmic reticulum (SR) vesicles with similar lipid content as normal SR was obtained by studies of ATPase activity and calcium transport in transient state, steady state, and equilibrium conditions. For this purpose, enzyme phosphorylation with ATP, hydrolytic activity, calcium transport, phosphorylation with Pi, and ATP synthesis by reversal of the pump were measured, and utilized to demonstrate function and orientation of catalytic sites. The preparations used in these studies displayed the highest activity reported for reconstituted sarcoplasmic reticulum systems. The rates of phosphoenzyme formation from ATP and hydrolysis as well as steady state levels matched the values obtained with normal SR vesicles. Calcium transport and repeated cycles of ATP synthesis by reversal of the pump were also obtained. However, the efficiency of transport and ATP synthesis from a Ca2+ gradient was approximately three times lower than in native vesicles. This deficiency could not be attributed to passive calcium leak from the reconstituted vesicles but, in part, can be explained by the bidirectional alignment of the calcium pump in reconstituted SR. It is suggested that vectorial transport requires a more complex level of protein structure than that for sustaining simple ATPase activity. Time resolution of the phosphorylation reaction by rapid quench methods can be used to estimate the orientation of the calcium pump in the membrane. Such studies indicate that the calcium pump protein is largely bidirectionally oriented in reconstituted SR vesicles.  相似文献   

3.
4.
A purified preparation of sarcoplasmic reticulum from rabbit skeletal muscle has been found to consist of a heterogeneous population of vesicles. Isopycnic centrifugation was used to obtain "light" and "heavy" vesicles from the upper and lower ends of a 25 to 45% (w/w) linear sucrose gradient. Each fraction accounted for about 10 to 15% of the total vesicles. The remainder of the vesicles were of intermediate density and banded between the light and heavy fraction. Light vesicles were composed of about equal amounts of phospholipid and Ca-2+ pump protein which contained approx. 90% of the protein. Heavy vesicles contained in addition to the Ca-2+ pump protein (55-65% of the protein) two other major protein components, the Ca-2+ binding and M55 proteins which accounted for 20-25 and 5-7% of the protein of these vesicles, respectively. The sarcoplasmic reticulum subfractions had 32-P-labelled phosphoenzyme levels proportional to their Ca-2+ pump protein content and contained similar Ca-2+-stimulated ATPase activities. They were capable of accumulating Ca-2+ in the presence of ATP and of releasing the accumulated Ca-2+ when placed into a medium with a low Ca-2+ concentration. The vesicles differed significantly in that heavy vesicles had a greater number of non-specific Ca-2+ binding sites than light vesicles (approx. 220 vs 75 nmol of bound Ca-2+ per mg protein), in accordance with their high content of Ca-2+ binding protein. Electron dense material could be seen within the compartment of heavy but not light vesicles. Removal of Ca-2+ binding and M55 proteins from heavy vesicles resulted in empty membranous structures consisting mainly of Ca-2+ pump protein and phospholipid. Electron micrographs of sections of muscle showed dense material in terminal cisternae but not in longitudinal sections of sarcoplasmic reticulum. These experiments are consistent with the interpretation that (1) the electron dense material inside heavy vesicles may be referable to Ca-2+ binding and/or M55 proteins, and that (2) light and heavy vesicles may be derived from the longitudinal sections and terminal cisternae of sarcoplasmic reticulum, respectively.  相似文献   

5.
Quinacrine is a fluorescence probe useful for studying the effect of local anesthetics. The interaction of quinacrine and sarcoplasmic reticulum membranes measured by fluorescence spectroscopy indicates the presence of a saturable binding site. Typical local anesthetics are able to displace quinacrine bound to heavy sarcoplasmic reticulum membranes. The effectiveness of that displacement decreases in the order dibucaine greater than tetracaine greater than benzocaine greater than lidocaine greater than procaine greater than procainamide, indicating that the size and hydrophobicity of quinacrine are major determinants in the binding process. The use of radioactive tracer and a rapid filtration technique reveals that quinacrine interacts, at lower concentrations, with sarcoplasmic reticulum membranes by blocking the Ca2+-induced Ca2+ release. Higher quinacrine concentrations also affect the Ca2+-pump activity.  相似文献   

6.
The release of Ca2+ from vesicles of heavy sarcoplasmic reticulum after its accumulation due to hydrolysis of ATP, GTP, CTP, UTP or ITP has been studied using Antipyrylazo III, a metal-chromic Ca-indicator. All the studied substrates of the Ca-pump provide Ca2+ accumulation inside the heavy sarcoplasmic reticulum vesicles, the spontaneous Ca2+ outflux rate being different for different nucleoside triphosphates. It is only ATP that provides Ca-(caffeine)-induced Ca2+ release, however AMP, ADP, beta, gamma-methylene-ATP induce Ca2+ ejection in the presence of nonadenylic nucleotides. The ruthenium red (10(-7M) inhibits the induced ejection of Ca2+ from vesicles of the heavy sarcoplasmic reticulum, but does not prevent the spontaneous release of Ca2+ in the same concentrations. A conclusion is drawn that besides Ca-channels sensitive to Ca2+ and caffeine in the presence of ATP (or to AMP, ADP, beta, gamma-methylene-ATP in the presence of nonadenylic nucleotides) and possessing high sensitivity to the ruthenium red there is another pathway for Ca2+ in the heavy reticulum membranes along which its spontaneous release occurs after the substrate exhaustion. It is supposed that this release is provided by the presence of the Ca-ATPase protein.  相似文献   

7.
Summary Light and heavy sarcoplasmic reticulum vesicles (LSR, HSR) isolated from rabbit leg muscle have been used in a study of chloride-induced Ca2+ release. The biochemical and morphological data indicate that LSR is derived from the longitudinal reticulum and HSR is derived from the terminal cisternae of the sarcoplasmic reticulum. LSR and HSR were both able to accumulate Ca2+ in the presence of ATP to amounts greater than 100 nmol Ca2+/mg of protein in less than 1 min. LSR and HSR each had a biphasic time course of Ca2+ uptake. The initial uptake was followed by a rapid release, after approximately 1 min, of 30–40% of the accumulated Ca2+, which was then followed by a slower phase of Ca2+ accumulation. Ca2+ taken up by the SR vesicles could be released from both the LSR and HSR by changing the anion outside the vesicles from methanesulfonate to chloride. Due to the difference in permeability between methanesulfonate and chloride, this change should result in a decreased positivity inside the vesicles with respect to the exterior. It could also result in osmotic swelling of the vesicles. Changing the ionic medium from chloride to methanesulfonate caused no release of Ca2+. The amount of accumulated Ca2+ released in 6 sec by changing the anion outside the vesicles from methanesulfonate to chloride was 30–35 nmol/mg membrane protein for LSR and HSR, respectively. Osmotic buffering with 200mm sucrose caused a slight inhibition of chloride-induced Ca2+ release from HSR (17%15%) but it greatly reduced the release of Ca2+ from LSR (32%15%). The specificity of Ca2+ release was measured using SR vesicles which were passively loaded with 10mm 22Na+. LSR released five times more22Na+ than HSR under same conditions as chloride-induced Ca2+ release occurred. Na dantrolene (20 m) had no effect on the release of Ca2+ from LSR but it inhibited the chloride-induced Ca2+ release from HSR by more than 50%. Na dantrolene also increased the Ca2+ uptake in the HSR by 20% while not affecting LSR Ca2+ uptake. Our results indicate the presence of a chloride-induced, Na dantrolene inhibited, Ca2+ release from HSR, which is not due to osmotic swelling.  相似文献   

8.
Ca2+ efflux was studied in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. In experimental conditions in which the Ca2+ pump is reversed, the rate of Ca2? efflux varies with the ADP, orthophosphate and Mg2+ concentrations of the assay medium and is inhibited by Na+.  相似文献   

9.
10.
Trypsin digestion of junctional sarcoplasmic reticulum vesicles   总被引:1,自引:0,他引:1  
A Chu  C Sumbilla  D Scales  A Piazza  G Inesi 《Biochemistry》1988,27(8):2827-2833
A putative constituent of the junctional processes, connecting the terminal cisternae of sarcoplasmic reticulum and the transverse tubules of skeletal muscle fibers, is a greater than or equal to 350,000-dalton (Da) protein that displays ryanodine binding and Ca2+ channel properties. Ryanodine modulation of Ca2+ fluxes suggests that the ryanodine receptor and calcium channel are integral parts of one functional unit corresponding to the greater than or equal to 350,000-Da protein [Inui, M., Saito, E., & Fleischer, S. (1987) J. Biol. Chem. 262, 1740-1747; Campbell, K. P., Knudson, C. M., Imagawa, T., Leung, A. L., Sutko, J. L., Kahl, S. D., Raab, C. R., & Madson, L. (1987) J. Biol. Chem. 262, 6460-6463]. We subjected vesicular fragments of junctional-cisternal membrane to stepwise trypsin digestion. The greater than or equal to 350,000-Da protein is selectively cleaved in the early stage of digestion, with consequent disappearance of the corresponding band in electrophoretic gels. The Ca2+-ATPase is cleaved at a later stage, while calsequestrin is not digested under the same experimental conditions. While the Ca2+-ATPase yields two complementary fragments that are relatively resistant to further digestion, the greater than or equal to 350,000-Da protein yields fragments that are rapidly broken down to small peptides. Under conditions producing extensive digestion of the greater than or equal to 350,000-Da protein, the junctional processes are still visualized by electron microscopy, with no discernible alterations of their ultrastructure. The functional properties of the Ca2+ release channel are also maintained following trypsin digestion, including blockage by Mg2+ and ruthenium red and activation by Ca2+ and nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The active uptake and efflux of Ca2+ from suspensions of vesicles from heavy rabbit muscle sarcoplasmic reticulum have been examined using the antipyrylazo III dye method in the presence of various nucleotide triphosphate substrates to support active Ca2+ accumulation. On addition of ATP, Ca2+ is rapidly accumulated and maintained at high internal concentrations until the substrate for pump protein is exhausted. Ca2+-induced Ca2+ release which is inhibited by ruthenium red can be demonstrated. The kinetics of Ca2+ release via these channels is different from the Ca2+ efflux observed after substrate exhaustion. This rate was found to be dependent on the type of nucleotide triphosphate, decreasing in the order ATP greater than GTP greater than CTP greater than ITP UTP. It is suggested that different conformations of the Ca2+ pump protein induced by the different substrates may result in the creation of pathways for the facilitated diffusion of Ca2+.  相似文献   

13.
We investigated the functional interdependence of sarco-endoplasmic reticulum Ca2+ ATPase isoform 1 and ryanodine receptor isoform 1 in heavy sarcoplasmic reticulum membranes by synchronous fluorescence determination of extravesicular Ca2+ transients and catalytic activity. Under conditions of dynamic Ca2+ exchange ATPase catalytic activity was well coordinated to ryanodine receptor activation/inactivation states. Ryanodine-induced activation of Ca2+ release channel leaks also produced marked ATPase activation in the absence of measurable increases in bulk free extravesicular Ca2+. This suggested that Ca2+ pumps are highly sensitive to Ca2+ release channel leak status and potently buffer Ca2+ ions exiting cytoplasmic openings of ryanodine receptors. Conversely, ryanodine receptor activation was dependent on Ca2+-ATPase pump activity. Ryanodine receptor activation by cytosolic Ca2+ was (i) inversely proportional to luminal Ca2+ load and (ii) dependent upon the rate of presentation of cytosolic Ca2+. Progressive Ca2+ filling coincided with progressive loss of Ca2+ sequestration rates and at a threshold loading, ryanodine-induced Ca2+ release produced small transient reversals of catalytic activity. These data indicate that attainment of threshold luminal Ca2+ loads coordinates sensitization of Ca2+ release channels with autogenic inhibition of Ca2+ pumping. This suggests that Ca2+-dependent control of Ca2+ release in intact heavy sarcoplasmic reticulum membranes involves a Ca2+-mediated "cross-talk" between sarco-endoplasmic reticulum Ca2+ ATPase isoform 1 and ryanodine receptor isoform 1.  相似文献   

14.
15.
The effects of n-alcohols on sarcoplasmic reticulum vesicles   总被引:1,自引:0,他引:1  
  相似文献   

16.
Post-translational modifications of proteins from the human pituitary gland play an important role in the regulation of different body functions. We report on the application of a liquid chromatography-tandem mass spectrometry (MS/MS) based approach to detect and characterize phosphorylated proteins in a whole human pituitary digest. By combining an immobilized metal affinity column-based enrichment method with MS/MS conditions that favor the neutral loss of phosphoric acid from a phosphorylated precursor ion, we identified several previously undescribed phosphorylated peptides. The identified peptides were matched to the sequences of six pituitary proteins: the human growth hormone, chromogranin A, secretogranin I, 60S ribosomal protein P1 and/or P2, DnaJ homolog subfamily C member 5, and galanin. The phosphorylation sites of these important regulatory proteins were determined by MS/MS and MS(3) analysis.  相似文献   

17.
A rat heart sarcolemmal preparation could be obtained in which both 5'-nucleotidase and adenylate cyclase were enriched approx. 9-fold by subjecting a homogenate to a discontinuous sucrose gradient, without the use of a high salt extraction. After incubation of this fraction with Mg[gamma-32P]ATP, the majority of 32P incorporated was present in 24 000- and 9000-dalton protein components. Only when a heart cytosol fraction or a purified cyclic AMP-dependent protein kinase was added, was enhancement of 32P-incorporaton found by addition of cyclic AMP. The 9000- and 24 000-dalton proteins appeared to be interconvertible. The degree of conversion could be affected by changing the temperature during solubilizaion of the membranes in SDS prior to electrophoresis. This suggested that the 24 000-dalton protein does not correspond to phospholamban, first identified by others in canine heart sarcoplasmic reticulum. Moreover, it could be excluded that the 24 000-dalton protein was derived from contaminating myofibrillar troponin I. When the sarcolemmal fraction was preincubated with Ca2+, Mg2+, ATP and oxalate, contaminating sarcoplasmic reticulum vesicles, loaded with calcium oxalate, settled to a greater density in the sucrose gradient. Membrane constituents other than those with enzymatic activity were monitored to confirm the separation between sarcolemmal and sarcoplasmic reticulum membranes: Coomassie blue staining material, sialic acid, cholesterol and phospholipid. The 24 000- and 9000-dalton proteins were equally distributed among the sarolemmal and sarcoplasmic reticulum fractions present in the sucrose gradient. However, the rate of 32P-incorporation in the presence of heart cytosol fraction was much slowr in the sarcoplasmic reticulum than in the sarcolemmal fraction.  相似文献   

18.
19.
20.
The Ca2+-ryanodine receptor complex is solubilized in functional form on treating sarcoplasmic reticulum (SR) vesicles from rabbit fast skeletal muscle with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) (1 mg/mg protein) and 1 M NaCl at pH 7.1 by shaking for 30 min at 5 degrees C. The heavy membrane preparations obtained from pyrophosphate homogenates frequently exhibit junctional feet and appear to be derived primarily from the terminal cisternae of the SR. The characteristics of [3H]ryanodine binding are similar for the soluble receptor and the heavy SR vesicles with respect to dependence on Ca2+, pharmacological specificity for inhibition by six ryanoids and ruthenium red, and lack of sensitivity to voltage-dependent Ca2+-channel blockers, inositol 1,4,5-trisphosphate, or doxorubicin. In contrast, the cation sensitivity is decreased on receptor solubilization. The soluble receptor is modulated by cyclic nucleotides and rapidly denatured at 50 degrees C. Saturation experiments reveal a single class of receptors (Kd = 9.6 nM), whereas kinetic measurements yield a calculated association constant of 5.5 X 10(6) min-1 M-1 and a dissociation constant of 5.7 X 10(-4) min-1, suggesting that the [3H]ryanodine receptor complex ages with time to a state which is recalcitrant to dissociation. Sepharose chromatography shows that the receptor complex consists primarily of two protein fractions, one of apparent Mr 150,000-300,000 and a second, the [3H]ryanodine binding component, of approximately Mr 1.2 X 10(6). Preliminary analysis of the soluble receptor preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals subunits of Mr greater than 200,000 and major bands of calsequestrin and Ca2+-transport ATPase. These findings indicate that [3H]ryanodine binds to the Ca2+-induced open state of the channel involved in the release of contractile Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号