共查询到20条相似文献,搜索用时 0 毫秒
1.
John G. Ferrante 《Hydrobiologia》1976,50(1):11-15
The characteristics of phosphorus excretions of zooplankton collected in spring 1974 from Stonehouse Pond, New Hampshire were studied with gel filtration, ultraviolet spectroscopy and seston incorporation. The soluble phosphorus component released from a natural population has a molecular weight the same as orthophosphate and behaves similar to orthophosphate in seston incorporation studies. Approximately 15 percent of the total phosphorus released was organic, but could not be identified by ultraviolet spectroscopy. No evidence of nucleic acid excretion or any hydrolytic degradation product was detected in the ultraviolet spectrum.The experimental work was based on a thesis submitted to the Graduate School of the University of New Hampshire in partial fulfillment of the requirements for the degree of Doctor of Philosophy. 相似文献
2.
Robert L. Henry III 《Hydrobiologia》1985,120(1):3-9
Plastic bag field enclosures (1570 1) were used to investigate the relationship between zooplankton size distributions and the turnover rate of pelagic phosphorus. Water within the enclosures was filtered to simulate either low (200 µm mesh net) or high (80 µm) planktivory. The bags were then spiked with radiolabelled phosphorus and sampled 7 times during the following 24 h period. Zooplankton communities dominated by smaller size classes cycled more phosphorus than those composed of larger species. These experiments reveal that higher trophic level interactions, such as size selective predation, may have a significant impact upon nutrient regeneration rates and, hence, primary production. 相似文献
3.
SUMMARY 1. Following fish removal, the water quality in biomanipulated lakes often improves concomitant with decreased phosphorus (P) levels. Because the decrease in P concentrations derives most probably either directly or indirectly from fish, which are the main target of biomanipulation, this study examined the P release of 0+, 1+ and 2+ roach [Rutilus rutilus (L.)] and changes in the P release during summer in a shallow eutrophic lake in Finland. 2. The P release was separated into P derived from benthic and littoral food items and into recycled P derived from feeding on zooplankton, to estimate the contribution of net P additions to the water column by the fish to the increase in P concentrations of the lake water (75–110 mg P m?3) in summer 1991–96. 3. Individual P release of roach by both egestion and excretion was estimated with a bioenergetics model. The size of the roach population was estimated with a depletion method and the proportions of different age groups from catch samples, using a programme separating mixtures of normal distributions. The sensitivity of the release estimates to variation in the growth data was estimated with the jackknife technique. 4. The biomass‐specific P release by 0+ roach (0.36–0.54 mg P g?1 day?1) was higher than that by older roach (0.07–0.16 mg P g?1 day?1) throughout the summer. The P release by the whole roach population deriving from benthic and littoral food items (0.7–2.7 mg m?3 during July to August, representing a net addition to the water column) was 5–19 times lower in 1991–96 than the recycled P release deriving from zooplankton (8.9–25.7 mg m?3), and too low to explain the increase in the P concentration of the lake water during the summer. Because the biomass‐specific P release and roach diet composition vary with fish age, it is important to consider the age structure of fish populations to obtain correct estimates of P release and net additions to the water column. 5. The removal of roach by fishing diminished the roach stock greatly, but the fish‐mediated P release to the water column changed little. This effect was because of the high compensation capacity of the roach population, leading to high recruitment of young fish with higher biomass‐specific P release rates. 6. External loading is very low during summer months and therefore it cannot explain the increase in the P concentration of water during that time. Internal loading from the sediment might be as high as 10.2 mg P m?2 day?1, i.e. 50 times higher than the maximum net P addition by the total roach population. 相似文献
4.
MICHELLE L. VERANT MELISSA L. KONSTI KYLE D. ZIMMER CARRIE A. DEANS 《Freshwater Biology》2007,52(10):1968-1981
Summary 1. Fish excretion can be an important source of nutrients in aquatic ecosystems. Nitrogen (N) and phosphorus (P) excretion rates are influenced by many factors, including fish diet, fish growth rate and fish size. However, the relative influence of these and other factors on community‐level excretion rates of fish is unknown. 2. We used bioenergetics modeling to estimate excretion rates of eight fish species in a shallow, Minnesota (U.S.A.) lake over four months in both 2004 and 2005. Excretion rates of each species were summed for community‐level N and P excretion rates, as well as the N : P ratio of excretion. We then used a model‐selection approach to assess ability of independent variables to predict excretion rates, and to identify the most parsimonious model for predicting N : P excretion ratios and P and N excretion rates at the community scale. Predictive models were comprised of the independent variables water temperature and average fish density, fish size, fish growth rate, nutrient content of fish and nutrient content of fish diets at the community scale. 3. Fish density and nutrient content of fish diets (either N or P) were the most parsimonious models for predicting both N and P excretion rates, and explained 96% and 92% of the variance in N and P excretion, respectively. Moreover, fish density and nutrient models had 1400‐fold more support for predicting N and 21‐fold more support for predicting P excretion relative to models based on fish density only. Water temperature, fish size, fish growth rates and nutrient content of fish showed little influence on excretion rates, and none of our independent variables showed a strong relationship with N : P ratios of excretion. 4. Past work has focused on the importance of fish density as a driver of fish excretion rates on a volumetric basis. However, our results indicate that volumetric excretion rates at the community scale will also change substantially in response to changes in relative abundance of fish prey or shifts in relative dominance of planktivores, benthivores, or piscivores. Changes in community‐scale excretion rates will have subsequent influences on algal abundance, water clarity, and other ecosystem characteristics. 相似文献
5.
Seasonal dynamics of zooplankton in a shallow eutrophic,man-made hyposaline lake in Delhi (India): role of environmental factors 总被引:1,自引:0,他引:1
Old Fort Lake, a small (1.6 ha), shallow, and recreational water body in Delhi (India) was studied through monthly surveys
in two consecutive years (January, 2000–December, 2001). Precipitation is the major source of water for this closed basin
lake. In addition, ground water is used for replenishing the lake regularly. This alkaline, hyposaline hard water lake contains
very high ionic concentration, especially of nitrates. Based on overall ionic composition, this lake can be categorized as
chloride–sulfate alkaline waters with the anion sequence dominated by SO4
2− > Cl− > HCO3
−, and the cations by Mg++ > Ca++. The overall seasonal variability in physicochemical profile was largely regulated by the annual cycle of evaporation and
precipitation, whereas the ground water largely influences its water quality. The lake exhibited phytoplankton-dominated turbid
state due to dominance of the blue green alga, Microcystis aeruginosa. The persistent cyanobacterial blooms and the elevated nutrient levels are indicative of the cultural eutrophication of the
lake. This study focuses on the relative importance of eutrophic vis-à-vis hyposaline conditions in determining the structure
and seasonal dynamics of zooplankton species assemblages. A total of 52 zooplankton species were recorded and rotifers dominated
the community structure qualitatively as well as quantitatively. The genus Brachionus comprised a significant component of zooplankton community with B. plicatilis as the most dominant species. The other common taxa were B. quadridentatus, B. angularis, Lecane grandis, L. thalera, L. punctata, Mesocyclops sp., and Alona rectangula. Multivariate data analysis techniques, Canonical Correspondence Analysis (CCA) along with Monte Carlo Permutation Tests
were used to determine the minimum number of environmental factors that could explain statistically significant (P < 0.05) proportions of variation in the species data. The significant variables selected by CCA were NH3–N followed by percent saturation of DO, COD, SS, BOD, NO2–N, rainfall, silicates, and PO4–P. The results indicate that the seasonal succession patterns of the zooplankton species were largely controlled by physicochemical
factors related directly or indirectly to the process of eutrophication, whereas hyposaline conditions in the lake determined
the characteristic species composition.
Guest Editors: J. John & B. Timms
Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for
Salt Lake Research 相似文献
6.
In 49 unpolluted lakes of north-eastern Poland the biomass of algae in summer is significantly related to the concentration of total phosphorus and to the rate of phosphorus regeneration by zooplankton. Using a model with equations describing these relationships, the biomass of blue-green algae and other phytoplankton groups was predicted for 14 polluted lakes. A good approximation of actual values was obtained only for the biomass of blue-green algae calculated from the estimated rate of P regeneration by zooplankton in these lakes. It is hypothesized that more-or-less edible algae of other classes did not show dependence on the rate of input of regenerated P because their biomass was heavily reduced by grazing of zooplankton. 相似文献
7.
Jukka Horppila Pertti Eloranta Anne Liljendahl-Nurminen Juha Niemistö Zeynep Pekcan-Hekim 《Aquatic Ecology》2009,43(1):91-103
The contribution of predators and abiotic factors to the regulation of the biomass and seasonal succession of crustacean zooplankton was studied in Lake Rehtijärvi (southern Finland). Field data in combination with bioenergetics modeling indicated that invertebrate planktivory by Chaoborus depressed cladoceran populations during early summer. In particular, bosminids that generally form the spring biomass peak of cladocerans in stratified temperate lakes did not appear in the samples until July. In July, predation pressure by chaoborids was relaxed due to their emergence period and cladoceran population growth appeared to be limited by predation by planktivorous fish. The effect of fish predation was amplified by reduced refuge availability for cladocerans. The concentration of dissolved oxygen below the epilimnion was depleted, forcing cladocerans to move upward to less turbid and thus more dangerous water layers. The effect of size selective predation by fish resulted in reduced mean size of cladocerans during the period when refuge thickness (thickness of the water layer with oxygen concentration <1 mg l?1 and water turbidity >30 NTU) was lowest. The results confirmed that in clay-turbid lakes, invertebrate predators could be the main regulators of herbivorous zooplankton even when cyprinid fish are abundant. 相似文献
8.
Bacteria as a source of phosphorus for zooplankton 总被引:3,自引:0,他引:3
The utilization of bacterial phosphorus in zooplankton metabolism was investigated using radio-phosphorus labelled natural
bacteria as food source for zooplankton in feeding experiments. Incorporation of labelled bacteria was clearly related to
the species' ability to graze on bacteria, with the cladoceran Daphnia reaching the highest biomass-specific activity and the copepod Acanthodiaptomus the lowest. Within Daphnia, juveniles had a higher biomass-specific uptake of phosphorus than adults. This was presumably
caused by higher growth rates of the juveniles rather than age-specific differences in the ability to feed on bacteria, supported
by the observation that the juveniles had the highest specific P-content. Retention of ingested 32P from labelled particles exceeded 80%, indicating higher assimilation efficiencies on phosphorus compared with carbon. In
the investigated humic lake, approximately 75% of the phosphorus in grazable particles was bound in bacterial cells, making
bacteria the most important source of P to the bacterivore zooplankton species. 相似文献
9.
Short-term (16 h) laboratory studies of 32P uptake by Elodea densa rooted in sediment demonstrated both foliar and root uptake, and that translocation occurred acropetally and basipetally. Root absorption is projected to provide 83–85% of total phosphorus uptake during 12–16 h photoperiod days. Measured foliar uptake and excretion rates suggest that there would be no net leakage of phosphorus into the water by undamaged actively-growing E. densa. Foliar uptake decreased and root uptake increased in the dark relative to rates under light. 相似文献
10.
The capacity of Elodea nuttallii (Planch.) St. John and Elodea canadensis Michx. to remove nitrogen from water was evaluated in laboratory experiment. The growth rate of plants and their effect on the nitrogen level of hypertrophic Lake Zwemlust (the Netherlands) as well as on lake water enriched with nitrogen were investigated. The plants grew best in water enriched with up to 2 mg NH4-Nl–1 and 2 mg NH4-Nl–1 plus 2 mg NO3 Nl–1. During a 14 day experiment, plants absorbed from 75% to 90% of nitrogen. Higher nitrogen concentration than 4 mg l–1 had a negative effect on growth of both species. Elodea nuttallii and E. canadensis prefer NOinf4/p+ over NOinf4/p– when both ions were present in water in equal concentrations. 相似文献
11.
Lake Vanda is a permanently ice covered, meromictic, closed basin lake, located in the Dry Valley region of Southern Victoria Land, Antarctica. A unique feature of the lake water column structure is that the bottom lake waters exist as a natural diffusion cell. The diffusive nature of these waters allows rates of sulfate reduction, nitrification and denitrification to be calculated from nutrient concentration gradients. Calculation reveals that sulfate reduction is by far the most important anoxic process acting to oxidize organic material. In addition, rate calculations reveal that bottom water nutrient profiles are in steady state. One argument in support of this conclusion is that the calculated rate of nitrification balances the flux of ammonia from the anoxic lake waters. The flux of phosphorus from the reducing waters is several times less than would be predicted from the nitrogen and phosphorus content of decomposing lake seston. Solubility calculations show that phosphorus may be actively removed at depth in Lake Vanda by the formation of hydroxyapatite. It is found that estimated rates of nitrogen and phosphorus removal in the bottom lake waters and sediments roughly balance the riverine input flux. This suggests that throughout the lake a nutrient steady state may exist, and that the anoxic zone may be the most important loci for nutrient removal. Finally, the ratio of nitrogen to phosphorus entering Lake Vanda by riverine input is less than the Redfield ratio of 16/1; in contrast to the lake waters which are strongly phosphorus limited at all depths. This curious aspect of the lake's nutrient chemistry is explained by the presence of preformed nitrogen, which has been concentrated in the deep brine due to several episodes of evaporative concentration. 相似文献
12.
Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake 总被引:1,自引:2,他引:1
The influence of calcite precipitation on the phosphorus cycle in stratified hardwater lake was studied before and during experiments with a new restoration technique. Surveys of the chemical composition of water column and monitoring of settling particles of Lake Luzin (North–East) showed that calcite precipitation occurs each year over 2–3 periods during spring and summer. The change of the phosphorus content influenced the calcite precipitation intensity. The sedimentation fluxes of phorphorus and the calcite precipitation were closely associated. Based on the hypothesis that calcite precipitation acts as an improvement to the trophic state by enhancing the internal phosphorus sink, this new technology for lake restoration was developed. The hypolimnetic Ca(OH)2 addition during summer stratification in 1996–1997 induced the calcite precipitation in the deep water layer of Basin Carwitz of Lake Schmaler Luzin. The treatment also supported the natural calcite precipitation in the epilimnion. The annual total phosphorus content decreased from 0.46 tons in 1995 to 0.35 tons in 1997. The annual SRP content decreased from 0.02 tons in 1996 to 0.01 tons in 1997 after beginning the artificial calcite precipitation in 1996. The decrease of the annual Chl-a concentration in 1998 on 38% compared with that in 1996 pointed out the lake recovering. According to the one box model, the artificial calcite precipitation affected the P cycle in the lake by suppressing the P release from the sediments. 相似文献
13.
The relatively low biodiversity and simple hydrodynamics make solar salt ponds ideal sites for ecological studies. We have
studied the ecological gradient of the primary ponds at the Shark Bay Resources solar salt ponds, Western Australia, using
a coupled hydrodynamic ecological numerical model, DYRESM–CAEDYM. Seven ponds representative of the primary system were simulated
with salinity ranging from 45 to 155 ppt. Five groups of organisms were simulated: three phytoplankton, one microbial mat
plankton, and one zooplankton as well as dissolved inorganic and particulate organic nitrogen, phosphorus, and carbon. By
extracting the various carbon fluxes from the model, we determined the role that the introduced zooplankton, Artemia sp., plays in grazing the particulate organic carbon (POC) from the water column in the high salinity ponds. We also examined
the nutrient fluxes and stoichiometric ratios of the various organic components for each pond to establish the extent to which
observed patterns in nutrient dynamics are mediated by the presence of Artemia sp. Model results indicated that Artemia sp. grazing was responsible for reduced water column POC in the higher salinity ponds. This resulted in an increase in photosynthetic
available radiation (PAR) reaching the pond floor and consequent increase in microbial mat biomass, thus demonstrating the
dual benefits of Artemia sp. to salt production in improved quality and quantity. In contrast, this study found no direct link between Artemia sp. and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the
ponds.
Guest Editors: J. John & B. Timms
Salt Lake Research: Biodiversity and Conservation—Selected Papers from the 9th Conference of the International Society for
Salt Lake Research 相似文献
14.
JOSEPH D. CONROY WILLIAM J. EDWARDS RUTH A. PONTIUS DOUGLAS D. KANE HONGYAN ZHANG JOHN F. SHEA JULIE N. RICHEY DAVID A. CULVER 《Freshwater Biology》2005,50(7):1146-1162
1. Recent increases in phytoplankton biomass and the recurrence of cyanobacterial blooms in western Lake Erie, concomitant with a shift from a community dominated by zebra mussels (Dreissena polymorpha) to one dominated by quagga mussels (D. bugensis), led us to test for differences in ammonia‐nitrogen and phosphate‐phosphorus excretion rates of these two species of invasive molluscs. 2. We found significant differences in excretion rate both between size classes within a taxon and between taxa, with zebra mussels generally having greater nutrient excretion rates than quagga mussels. Combining measured excretion rates with measurements of mussel soft‐tissue dry weight and shell length, we developed nutrient excretion equations allowing estimation of nutrient excretion by dreissenids. 3. Comparing dreissenid ammonia and phosphate excretion with that of the crustacean zooplankton, we demonstrated that the mussels add to nitrogen and phosphorus remineralisation, shortening nitrogen and phosphorus turnover times, and, importantly, modify the nitrogen and phosphorus cycles in Lake Erie. The increased nutrient flux from dreissenids may facilitate phytoplankton growth and cyanobacterial blooms in well‐mixed and/or shallow areas of western Lake Erie. 相似文献
15.
Rapid microbial metabolism and a large phosphorus uptake potential were observed in surface sediments of Lake George, New York. This sediment (termed the flocculent layer) also exhibited a phosphorus limited condition and a large reservoir of inorganic phosphorus associated with humic substances. These observations suggest that the empirically observed phosphorus retention in oligotrophic lake sediments may be promoted by a rapid cycling of phosphorus between microflora and its associated organic matter. 相似文献
16.
MANUEL VILLAR‐ARGAIZ JUAN M. MEDINA‐SNCHEZ FRANCISCO J. BULLEJOS JOS A. DELGADO‐MOLINA OLGA RUÍZ PREZ JUAN C. NAVARRO PRESENTACI
N CARRILLO 《Freshwater Biology》2009,54(6):1233-1245
1. Numerous laboratory studies have shown that food quality is suboptimal for zooplankton growth. However, little is known about how food quality is affected by the interaction of potential global change factors in natural conditions. Using field enclosures in a high altitude Spanish lake, seston was exposed to increasing phosphorus (P) concentrations in the absence and presence of UV radiation (UVR) to test the hypothesis that interactions between these factors affected the biochemical and stoichiometric composition of seston in ways not easily predicted from studies of single factors. 2. Phosphorus enrichment increased the content of total fatty acids (TFA), ω3‐polyunsaturated fatty acids (ω3‐PUFA) and chlorophyll‐a : carbon (Chl‐a : C) and C : N ratios in seston. The pronounced increase in ω3‐PUFA was largely explained by the enhancement of 18:3n‐3 (α‐linolenic acid). In contrast, P‐enrichment lowered the content of highly unsaturated fatty acids (HUFA), the HUFA : PUFA ratio and, at high P loads, seston C : P ratio. Although phytoplankton assemblages dominated by Chlorophytes were not rich in HUFA, seston in the control had substantially higher 20:4n‐6 (arachidonic acid, ARA) content (79% of HUFA) than did P‐enriched enclosures. 3. The UVR increased the content of ω3‐PUFA and TFA in seston at the two ends of the trophic gradient generated at ambient and high concentrations of P, but decreased seston C : P and HUFA at all points on this gradient. ARA was not detected in the presence of UVR. 4. The interaction between P and UVR was significant for seston HUFA and C : P ratios, indicating that the effect of UVR in reducing HUFA (decreased food quality) and C : P ratios (enhanced food quality) was most pronounced at the low nutrient concentrations characteristic of oligotrophic conditions and disappeared as P increased. Therefore, any future increase in UVR fluxes will probably affect most strongly the food quality of algae inhabiting oligotrophic pristine waters although, at least in the Mediterranean region, these effects could be offset by greater deposition of P from the atmosphere. 相似文献
17.
Lech Kufel 《Hydrobiologia》1993,251(1-3):269-274
Sedimentation at the Krutynia River inflow to Lake Kujno was closely related to hydrological regime. The highest sedimentation rates, recorded in spring, decreased during summer by two orders of magnitude. Granulometric segregation of settling seston along the inflow zone was related to differentiation of phoshorus content. Smaller particles were richer in P, producing a gradient of increasing P concentrations in the settling material. A substantial loss of P from polyphosphate and various organic fractions was found after settlement of river suspensoids. Mechanisms of P losses are discussed and possibilities of P retention within the inflow zone are considered. 相似文献
18.
Stanley I. Dodson William R. Everhart Andrew K. Jandl Sara J. Krauskopf 《Hydrobiologia》2007,579(1):393-399
Results of a field survey of southern Wisconsin shallow lakes suggested that watershed (catchment basin) land use has a significant and adverse effect on zooplankton species richness. Zooplankton communities in lakes with no riparian buffer zone, in agriculture-dominated watersheds, contained about half as many species as lakes in least-impact watersheds. In that study, the age of the lake was not taken into account. It is possible that agricultural lakes, often artificial, were so recently-constructed that they had not yet accumulated the equilibrium number of species characteristic of older lakes. In other words, it is possible that the interpretation of the results of the previous study is fatally flawed, if the results were an artifact of lake age, rather than an effect of land use. The major aim of this current study was to determine the ages of agricultural lakes and of lakes in least-impact watersheds, to test for an effect of lake age on zooplankton species richness, using the same sites from the previous study. We used an anova approach to test the null hypothesis that two factors, watershed land use and lake age, had no systematic effect on zooplankton species richness. We determined the age of 35 shallow lakes, using aerial photos, satellite images, and interviews of resource managers and land owners. We identified five artificial agricultural sites and five artificial sites in least-impact prairie watersheds. The artificial sites in this study ranged from 3 to 37 years in age, while natural lakes dated from the melting of the last glacier, about 9500 years ago. Our results suggest, that because artificial lake made up only about a third of the sites, and for the range of lake age and watershed land use, lake age did not have a significant effect on zooplankton species richness, while land use had a highly significant adverse effect. These results pose a larger question for future research. Namely, how quickly do newly-constructed lakes attain the equilibrium number of species seen in the previous study, and what is the quantitative relationship between lake age and zooplankton richness? 相似文献
19.
Essential fatty acids and phosphorus in seston from lakes with contrasting terrestrial dissolved organic carbon content 总被引:1,自引:0,他引:1
1. It is often assumed that lakes highly influenced by terrestrial organic matter (TOM) have low zooplankton food quality because of elemental and/or biochemical deficiencies of the major particulate organic carbon pools. We used the biochemical [polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) – 20:5ω3] and elemental (C : P ratio) composition of particulate matter (PM) as qualitative measures of potential zooplankton food in two categories of lakes of similar primary productivity, but with contrasting TOM influence (clear water versus humic lakes). 2. C : P ratios (atomic ratio) in PM were similar between lake categories and were above 400. The concentration (μg L−1) and relative content (μg mg C−1) of EPA, as well as the particulate organic carbon concentration, were higher in the humic lakes than in the clear‐water lakes. 3. Our results show high fatty acid quality of PM in the humic lakes. The differences in the biochemical quality of the potential zooplankton food between lake categories can be attributed to the differences in their phytoplankton communities. 4. High biochemical quality of the food can result in high efficiency of energy transfer in the food chain and stimulate production at higher trophic levels, assuming that zooplankton are able to ingest and digest the resource available. 相似文献
20.
Lynch SA Armitage DV Coughlan J Mulcahy MF Culloty SC 《Experimental parasitology》2007,115(4):359-368
Bonamia ostreae is a protistan parasite of the European flat oyster, Ostrea edulis. Though direct transmission of the parasite can occur between oysters, it is unclear if this represents the complete life cycle of the parasite, and the role of a secondary or intermediate host or carrier species cannot be ruled out. In this preliminary study, benthic macroinvertebrates and zooplankton from a B. ostreae-endemic area were screened for the presence of parasite DNA, using polymerase chain reaction (PCR). Eight benthic macroinvertebrates and nineteen grouped zooplankton samples gave positive results. Certain species, found positive for the parasite DNA, were then used in laboratory transmission trials, to investigate if they could infect na?ve oysters. Transmission of B. ostreae was effected to two na?ve oysters cohabiting with the brittle star, Ophiothrix fragilis. 相似文献