首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines.  相似文献   

2.
3.
Ezrin is a cyclic AMP-dependent protein kinase anchoring protein.   总被引:17,自引:1,他引:16       下载免费PDF全文
cAMP-dependent protein kinase (A-kinase) anchoring proteins (AKAPs) are responsible for the subcellular sequestration of the type II A-kinase. Previously, we identified a 78 kDa AKAP which was enriched in gastric parietal cells. We have now purified the 78 kDa AKAP to homogeneity from gastric fundic mucosal supernates using type II A-kinase regulatory subunit (RII) affinity chromatography. The purified 78 kDa AKAP was recognized by monoclonal antibodies against ezrin, the canalicular actin-associated protein. Recombinant ezrin produced in either Sf9 cells or bacteria also bound RII. Recombinant radixin and moesin, ezrin-related proteins, also bound RII in blot overlay. Analysis of recombinant truncations of ezrin mapped the RII binding site to a region between amino acids 373 and 439. This region contained a 14-amino-acid amphipathic alpha-helical putative RII binding region. A synthetic peptide containing the amphipathic helical region (ezrin409-438) blocked RII binding to ezrin, but a peptide with a leucine to proline substitution at amino acid 421 failed to inhibit RII binding. In mouse fundic mucosa, RII immunoreactivity redistributed from a predominantly cytosolic location in resting parietal cells, to a canalicular pattern in mucosa from animals stimulated with gastrin. These results demonstrate that ezrin is a major AKAP in gastric parietal cells and may function to tether type II A-kinase to a region near the secretory canaliculus.  相似文献   

4.
5.
Activation of protein kinase B (PKB) by growth factors and hormones has been demonstrated to proceed via phosphatidylinositol 3-kinase (PI3-kinase). In this report, we show that PKB can also be activated by PKA (cyclic AMP [cAMP]-dependent protein kinase) through a PI3-kinase-independent pathway. Although this activation required phosphorylation of PKB, PKB is not likely to be a physiological substrate of PKA since a mutation in the sole PKA consensus phosphorylation site of PKB did not abolish PKA-induced activation of PKB. In addition, mechanistically, this activation was different from that of growth factors since it did not require phosphorylation of the S473 residue, which is essential for full PKB activation induced by insulin. These data were supported by the fact that mutation of residue S473 of PKB to alanine did not prevent it from being activated by forskolin. Moreover, phosphopeptide maps of overexpressed PKB from COS cells showed differences between insulin- and forskolin-stimulated cells that pointed to distinct activation mechanisms of PKB depending on whether insulin or cAMP was used. We looked at events downstream of PKB and found that PKA activation of PKB led to the phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) activity, a known in vivo substrate of PKB. Overexpression of a dominant negative PKB led to the loss of inhibition of GSK-3 in both insulin- and forskolin-treated cells, demonstrating that PKB was responsible for this inhibition in both cases. Finally, we show by confocal microscopy that forskolin, similar to insulin, was able to induce translocation of PKB to the plasma membrane. This process was inhibited by high concentrations of wortmannin (300 nM), suggesting that forskolin-induced PKB movement may require phospholipids, which are probably not generated by class I or class III PI3-kinase. However, high concentrations of wortmannin did not abolish PKB activation, which demonstrates that translocation per se is not important for PKA-induced PKB activation.  相似文献   

6.
7.
The effects of methacholine and histamine were examined on cyclic AMP-dependent protein kinase (A-kinase) activity in guinea-pig isolated trachea, using kemptide as a substrate for phosphorylation during the determination of the enzyme activity. Methacholine (EC90, 10 microM) induced a rapid reduction in the basal A-kinase activity ratio, which was maximal after 30 s. This initial reduction coincided with the early phase of isometric tension development, and returned to control levels 4 min after the addition of methacholine. Pretreatment with atropine inhibited the methacholine response. In contrast, histamine (EC90, 30 microM) was without effect upon A-kinase activity ratio. The results establish the sensitivity of the A-kinase assay using kemptide and demonstrate that not all contractile agonists have the capacity to inhibit basal activity of A-kinase in airway smooth muscle.  相似文献   

8.
The catalytic subunit of rabbit muscle cyclic AMP-dependent protein kinase (EC 2.7.1.37; ATP:protein transferase) has been tested on a variety of caseins. The B variant of β-casein was phosphorylated at a much greater rate than other β-caseins, αs1-caseins, and κ-caseins. Whole casein homozygous for β-casein B was phosphorylated at 2.5 times the rate of commercial whole casein. Gel electrophoresis experiments indicate that β-casein is the predominant component phosphorylated in commerical casein. It is therefore suggested that phosphorylation of whole casein depends on its content of the specific genetic variant, β-casein B.  相似文献   

9.
10.
Crude cardiac membrane vesicles were separated into subfractions of sarcolemma and sarcoplasmic reticulum. The subfractions were used to determine the origin and type of cyclic AMP-dependent protein kinase activity present in myocardial membranes. A cyclic AMP-binding protein of molecular weight 55,000 was covalently labeled with the photoaffinity probe 8-azido adenosine 3',5'-mono[32P]phosphate, and found to copurify with the (Na+ + K+)-ATPase activity of sarcolemma, and away from the (Ca2+ + K+)-ATPase activity of sarcoplasmic reticulum. Endogenous cyclic AMP-dependent protein kinase activity also copurified with sarcolemma. Protein substrates phosphorylated by cyclic AMP-dependent protein kinase activity had apparent molecular weights of 21,000 and 8000 and were present in both sarcolemma and sarcoplasmic reticulum. However, while addition of cyclic AMP alone resulted in phosphorylation of sarcolemma proteins, both cyclic AMP and exogenous, soluble cyclic AMP-dependent kinase were required for phosphorylation of sarcoplasmic reticulum proteins. Addition of the calcium-binding protein, calmodulin, to either sarcolemma or sarcoplasmic reticulum resulted in phosphorylation of the 21,000 and 8000-dalton proteins, as well. The results suggest that cardiac sarcolemma contains an intrinsic type II cyclic AMP-dependent protein kinase activity that is not present in sarcoplasmic reticulum. On the other hand, Ca2+- and calmodulin-dependent protein kinase activity is present in both sarcolemma and sarcoplasmic reticulum.  相似文献   

11.
A somatic cell genetic approach has been used to evaluate the role of cyclic AMP-dependent protein kinase in ACTH action on adrenal steroidogenesis. A mutant clone, 8BrcAMPr-1, previously was isolated from an ACTH-sensitive adrenocortical tumor cell line (clone Y1) following mutagenesis and selective growth in 8-bromoadenosine 3′, 5′-monophosphate. This study demonstrates that the 8BrcAMP4-1 cells have an altered cyclic AMP-dependent protein kinase. The protein kinase in the cytosol of the mutant characteristically requires, for half-maximal activity, concentrations of cyclic AMP 7-fold higher than those required by the enzyme in preparations from the parent. The cytosolic cyclic AMP-dependent protein kinases of Y1 and 8BrcAMPr-1 cells chromatograph similarly on columns of DEAE-cellulose. From each cell line, a major peak of activity (≥ 70% of recovered activity), designated as Peak I, elutes with 0.04–0.06 M NaCl; a second peak of activity, designated as Peak II, elutes with 0.12–0.14 M NaCl. Protein kinase activity in the Peak I fraction of mutant cells has a decreased apparent affinity (4-fold) for cyclic AMP relative to the corresponding fraction of parental Y1 cells. The protein kinase activities present in Peak II fractions from Y1 and mutant cells are indistinguishable. The protein kinase mutant exhibits poor steroidogenic responses to added ACTH and cyclic AMP; and as shown previously does not display the growth arrest and morphological changes produced in Y1 by these agents. These results suggest that cyclic AMP-dependent protein kinase is important in the regulation of adrenal steroidogenesis, morphology and growth by ACTH.  相似文献   

12.
13.
14.
15.
Studies of the chromatographic distribution of soluble protein kinase in rat kidney demonstrated that the type I isoenzyme predominates in cortex, whereas activity in outer and inner medulla is almost exclusively the type II form. The type II isoenzyme also predominates (95% or greater) in human, canine, bovine, porcine and rabbit inner medulla. Compared to soluble type I activities from rat renal cortex or medulla, type II activity of inner medulla demonstrates a marked resistance to activation by NaCl and/or urea in subcellular preparations. However, with respect to solute activation, the resistance of the type II enzyme of inner medulla does not differ from that of type II activities from other tissues. In contrast to the effects on basal activity, NaCl and urea potentiated inner medullary type II activation by cyclic AMP and also delayed the rate of subunit reassociation after chromatographic removal of cyclic AMP. Incubation of inner medullary slices in high osmolality buffer (NaCl and urea) did not alone activate soluble protein kinase, an observation which implied that the enzyme was also resistant to solute activation in the intact cell system. Moreover, at 1650 mosM, vasopressin activation of soluble protein kinase was enhanced compared to responses at 750 mosM despite comparabel levels of cyclic AMP accumulation at the two osmolalities. However, a cyclic AMP-independent action of high osmolality to reduce the rate of inactivation of arginine vasopressin-stimulated protein kinase was not demonstrable in inner medullary slices.The present data suggest the possibility that the resistance of inner medullary protein kinase to solute activation could be related to the isomeric form of enzyme (type II) present in this tissue. The high concentrations of NaCl and urea routinely found in inner medulla during hydropenia also influenced protein kinase responses to arginine vasopressin, and may do so in part by directly potentiating the action of cyclic AMP on subunit dissociation.  相似文献   

16.
Study of a cyclic AMP-dependent protein kinase from calf thymus   总被引:1,自引:0,他引:1  
  相似文献   

17.
The influence of all trans-retinoic acid on cyclic AMP metabolism was examined in B16-F1 mouse melanoma cells. Treatment of these cells with retinoic acid resulted in a dose-dependent inhibition of cell growth which was accompanied by a concentration-dependent increase in both basal and cyclic AMP-stimulated protein kinase activity, Intracellular levels of cyclic AMP, however, were not altered by retinoid treatment. A protein kinase-deficient variant of B16-F1 (MR-4) did not exhibit decreased growth or increased protein kinase activity in response to retinoic acid treatment. At least 24 h of incubation was required before increased protein kinase activity could be detected in treated B16-F1 cells. Retinoic acid treatment increased the Vmax of protein kinase, but the Ka for cyclic AMP activation was not altered. These findings suggest that in B16 mouse melanoma cells, cyclic AMP-dependent protein kinase may be a target for the growth inhibitory effects of the retinoid.  相似文献   

18.
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号