首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stopped-flow techniques were utilized to investigate the kinetics of the reaction of lignin peroxidase compounds I and II (LiPI and LiPII) with veratryl alcohol (VA). All rate data were collected from single turnover experiments under pseudo first-order conditions. The reaction of LiPI with VA strictly obeys second-order kinetics over the pH range 2.72-5.25 as demonstrated by linear plots of the pseudo first-order rate constants versus concentrations of VA. The second-order rate constants are strongly dependent on pH and range from 2.62 x 10(6) M-1 s-1 (pH 2.72) to 1.45 x 10(4) M-1 s-1 (pH 5.25). The reaction of LiPII and VA exhibits saturation behavior when the observed pseudo first-order rate constants are plotted against VA concentrations. The saturation phenomenon is quantitatively explained by the formation of a 1:1 LiPII-substrate complex. Results of kinetic and rapid scan spectral analyses exclude the formation of a LiPII-VA cation radical complex. The first-order dissociation rate constant and the equilibrium dissociation constant for the LiPII reaction are also pH dependent. Binding of VA to LiPII is controlled by a heme-linked ionizable group of pKa approximately 4.2. The pH profiles of the second-order rate constants for the LiPI reaction and of the first-order dissociation constants for the LiPII reaction both demonstrate two pKa values at approximately 3.0 and approximately 4.2. Protonated oxidized enzyme intermediates are most active, suggesting that only electron transfer, not proton uptake from the reducing substrate, occurs at the enzyme active site. These results are consistent with the one-electron oxidation of VA to an aryl cation radical by LiPI and LiPII.  相似文献   

2.
Stopped-flow rapid scan techniques were used to obtain a spectrum of nearly homogeneous lignin peroxidase compound I (LiPI) under pseudo-first order conditions at the unusually low pH optimum (3.0) for the enzyme. The LiPI spectrum had a Soret band at 407 nm with approximately 60% reduced intensity and a visible maximum at 650 nm. Under steady-state conditions a Soret spectrum for lignin peroxidase compound II (LiPII) was also obtained. The Soret maximum of LiPII at 420 nm was only approximately 15% reduced in intensity compared to native LiP. Transient state kinetic results confirmed the pH independence of LiPI formation over the pH range 3.06-7.39. The rate constant was (6.5 +/- 0.2) x 10(5) M-1 S-1. Addition of excess veratryl alcohol to LiPI resulted in its reduction to LiPII with subsequent reduction of LiPII to the native enzyme. Reactions of LiPI and LiPII with veratryl alcohol exhibited marked pH dependencies. For the LiPI reaction the rate constants ranged from 2.5 x 10(6) M-1 S-1 at pH 3.06 to 4.1 x 10(3) M-1 S-1 at pH 7.39; for the LiPII reaction, 1.6 x 10(5) M-1 S-1 (pH 3.06) to 2.3 x 10(3) M-1 S-1 (pH 5.16). These single turnover experiments demonstrate directly that the pH dependence of these reactions dictates the overall pH dependence of this novel enzyme. These results are consistent with the one-electron oxidation of veratryl alcohol to an aryl cation radical by LiPI and by LiPII.  相似文献   

3.
K Valli  H Wariishi  M H Gold 《Biochemistry》1990,29(37):8535-8539
Lignin peroxidase (LiP), an extracellular heme enzyme from the lignin-degrading fungus Phanerochaete chrysosporium, catalyzes the H2O2-dependent oxidation of a variety of nonphenolic lignin model compounds. The oxidation of monomethoxylated lignin model compounds, such as anisyl alcohol (AA), and the role of veratryl alcohol (VA) in LiP reactions were studied. AA oxidation reached a maximum at relatively low H2O2 concentrations, beyond which the extent of the reactions decreased. The presence of VA did not affect AA oxidation at low molar ratios of H2O2 to enzyme; however, at ratios above 100, the presence of VA abolished the decrease in AA oxidation. Addition of stoichiometric amounts of AA to LiP compound II (LiPII) resulted in its reduction to the native enzyme at rates that were significantly faster than the spontaneous rate of reduction, indicating that AA and other monomethoxylated aromatics are directly oxidized by LiP, albeit slowly. Under steady-state conditions in the presence of excess H2O2 and VA, a visible spectrum for LiPII was obtained. In contrast, under steady-state conditions in the presence of AA a visible spectrum was obtained for LiPIII*, a noncovalent complex of LiPIII and H2O2. AA competitively inhibited the oxidation of VA by LiP; the Ki for AA inhibition was 32 microM. Addition of VA to LiPIII* resulted in its conversion to the native enzyme. In contrast, AA did not convert LiPIII* to the native enzyme; instead, LiPIII* was bleached in the presence of AA. Thus, AA does not protect LiP from inactivation by H2O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Lignin peroxidase compound III. Mechanism of formation and decomposition   总被引:9,自引:0,他引:9  
Lignin peroxidase compound III (LiPIII) was prepared via three procedures: (a) ferrous LiP + O2 (LiPIIIa), (b) ferric LiP + O2-. (LiPIIIb), and (c) LiP compound II + excess H2O2 followed by treatment with catalase (LiPIIIc). LiPIIIa, b, and c each have a Soret maximum at approximately 414 nm and visible bands at 543 and 578 nm. LiPIIIa, b, and c each slowly reverted to native ferric LiP, releasing stoichiometric amounts of O2-. in the process. Electronic absorption spectra of LiPIII reversion to the native enzyme displayed isosbestic points in the visible region at 470, 525, and 597 nm, suggesting a single-step reversion with no intermediates. The LiPIII reversion reactions obeyed first-order kinetics with rate constants of approximately 1.0 X 10(-3) s-1. In the presence of excess peroxide, at pH 3.0, native LiP, LiPII, and LiPIIIa, b, and c are all converted to a unique oxidized species (LiPIII*) with a spectrum displaying visible bands at 543 and 578 nm, but with a Soret maximum at 419 nm, red-shifted 5 nm from that of LiPIII. LiPIII* is bleached and inactivated in the presence of excess H2O2 via a biphasic process. The fast first phase of this bleaching reaction obeys second-order kinetics, with a rate constant of 1.7 X 10(1) M-1 s-1. Addition of veratryl alcohol to LiPIII* results in its rapid reversion to the native enzyme, via an apparent one-step reaction that obeys second-order kinetics with a rate constant of 3.5 X 10(1) M-1 s-1. Stoichiometric amounts of O2-. are released during this reaction. When this reaction was run under conditions that prevented further reactions, HPLC analysis of the products demonstrated that veratryl alcohol was not oxidized. These results suggest that the binding of veratryl alcohol to LiPIII* displaces O2-., thus returning the enzyme to its native state. In contrast, the addition of veratryl alcohol to LiPIII did not affect the rate of spontaneous reversion of LiPIII to the native enzyme.  相似文献   

5.
Veratryl alcohol (VA) at higher concentration stimulated the lignin peroxidase (LiP)-catalyzed oxidation of phenolic compounds remarkably. This novel phenomenon was due to its competition with the phenols for the active site of the enzyme and to the high reactivity of the formed cation radical of VA (VA+*) which resulted in an additional oxidation of the phenols. The influence of the nonionic surfactant Tween 80 on the VA-enhanced LiP-catalyzed oxidation of phenols depended on its concentration. At lower concentration it had a small synergetic effect but at higher concentration it decreased the initial rate. Studies of the capillary electrophoretic behavior of LiP in the presence of Tween 80 showed that this effect was caused by the surfactant aggregation on LiP which, at higher surfactant concentrations, might impede the access of VA to its binding site on LiP and, consequently, the VA+* formation.  相似文献   

6.
Lignin peroxidase (LiP) produced by Trametes versicolor decolorizes Remazol Brilliant Blue R (RBBR) in the presence as well as in the absence of veratryl alcohol (VA). VA enhances and stabilizes the RBBR-decolorization rates by lignin peroxidase. RBBR has better substrate reactivity than VA for LiP. RBBR is also decolorized directly by LiP and competitively inhibits VA oxidation by LiP. In the presence of higher concentrations of RBBR (i) RBBR decolorization rates improve, (ii) veratryl aldehyde appears after a lag and (iii) VA oxidation rates decrease. The lag is due to consumption of VA cation radical (VA+) generated upon LiP-catalyzed VA oxidation, during RBBR oxidation. That may result in the formation of compound III in the absence of VA+ and contributes to the inhibitory influence of RBBR on LiP activity.  相似文献   

7.
Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers   总被引:2,自引:0,他引:2  
Banci L  Ciofi-Baffoni S  Tien M 《Biochemistry》1999,38(10):3205-3210
The oxidation of phenolic oligomers by lignin and manganese peroxidases was studied by transient-state kinetic methods. The reactivity of peroxidase intermediates compound I and compound II was studied with the phenol guaiacol along with a beta-O-4 phenolic dimer, trimer, and tetramer. Compound I of both peroxidases is much more reactive than compound II. The rate constants for these substrates with Mn peroxidase compound I range from 1.0 x 10(5) M-1 s-1 for guaiacol to 1.1 x 10(3) M-1 s-1 for the tetramer. Reactivity is much higher with lignin peroxidase compound I with rate constants ranging from 1.2 x 10(6) M-1s-1 for guaiacol to 3.6 x 10(5) M-1 s-1 for the tetramer. Rate constants with compound II are much lower with Mn peroxidase exhibiting very little reactivity. The rate constants dramatically decreased with both peroxidases as the size of the substrate increased. The extent of the decrease was much more dramatic with Mn peroxidase, leading us to conclude that, despite its ability to oxidize phenols, Mn2+ is the only physiologically significant substrate. The rate decrease associated with increasing substrate size was more gradual with lignin peroxidase. These data indicate that whereas Mn peroxidase cannot efficiently directly oxidize the lignin polymer, lignin peroxidase is well suited for direct oxidation of polymeric lignin.  相似文献   

8.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

9.
Both cyclooxygenase and peroxidase reactions of prostaglandin H synthase were studied in the presence and absence of diethyldithiocarbamate and glycerol at 4 degrees C in phosphate buffer (pH 8.0). Diethyldithiocarbamate reacts with the high oxidation state intermediates of prostaglandin H synthase; it protects the enzyme from bleaching and loss of activity by its ability to act as a reducing agent. For the reaction of diethyldithiocarbamate with compound I, the second-order rate constant k2,app, was found to fall within the range of 5.8 x 10(6) +/- 0.4 x 10(6) M-1.s-1 less than k2,app less than 1.8 x 10(7) +/- 0.1 x 10(7) M-1.s-1. The reaction of diethyldithiocarbamate with compound II showed saturation behavior suggesting enzyme-substrate complex formation, with kcat = 22 +/- 3 s-1, Km = 67 +/- 10 microM, and the second-order rate constant k3,app = 2.0 x 10(5) +/- 0.2 x 10(5) M-1.s-1. In the presence of both diethyldithiocarbamate and 30% glycerol, the parameters for compound II are kcat = 8.8 +/- 0.5 s-1, Km = 49 +/- 7 microM, and k3,app = 1.03 x 10(5) +/- 0.07 x 10(5) M-1.s-1. The spontaneous decay rate constants of compounds I and II (in the absence of diethyldithiocarbamate) are 83 +/- 5 and 0.52 +/- 0.05 s-1, respectively, in the absence of glycerol; in the presence of 30% glycerol they are 78 +/- 5 and 0.33 +/- 0.02 s-1, respectively. Neither cyclooxygenase activity nor the rate constant for compound I formation using 5-phenyl-4-pentenyl-1-hydroperoxide is altered by the presence of diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
NADH chemistry ancillary to the oscillatory peroxidase-oxidase (PO) reaction has been reexamined. Previously, (NAD)2 has been thought of as a terminal, inert product of the PO reaction. We now show that (NAD)2 is a central reactant in this system. Although we found traces of the dimer after several hours of the PO reaction, no accumulation of the dimer occurred, regardless of the reaction time or the number of oscillations. (NAD)2 can convert horseradish peroxidase (HRP) compound I (CpI) to compound II (CpII) with apparent rate constant (2.7 +/- 0.2) x 105 M-1.s-1 and CpII to HRP at 1 x 105 M-1.s-1. Moreover, a reduction of HRP compound III (CpIII) to CpI by (NAD)2 occurs with a rate constant faster than 5 x 106 M-1.s-1. The (NAD)2 reduction of CpIII provides an alternative to the reduction by NAD radical suggested by Yokota and Yamazaki. HRP catalyzes oxidation of alpha-NADH, not only the beta anomer as previously assumed. Rate constants of alpha- and beta-NADH reactions with CpI are (7.4 +/- 0.4) x 105 M-1.s-1, and (1.7 +/- 0.2) x 105 M-1.s-1, and with CpII are estimated as 5 x 104 M-1.s-1, and 4 x 104 M-1.s-1. Apparent rate constants of reduction of methylene blue (MB) to leuco-methylene blue (MBH) are 3.8 x 104 M-1.s-1 for NADH and 6.4 x 104 M-1.s-1 for NAD dimer, (NAD)2, while reoxidation of MBH proceeds at (2.1 +/- 0.2) x 103 M-1.s-1 All the rates were measured in 0.1 M acetate buffer, pH 5.1.  相似文献   

11.
M A Cusanovich  G Tollin 《Biochemistry》1980,19(14):3343-3347
Cytochrome c-552 from Chromatium vinosum is an unusual heme protein in that it contains two hemes and one flavin per molecule. To investigate whether intramolecular electron transfer occurs in this protein, we have studied its reduction by external photoreduced flavin by using pulsed-laser excitation. This approach allows us to measure reduction kinetics on the mirosecond time scale. Both fully reduced lumiflavin and lumiflavin semiquinone radical reduce cytochrome c-552 with second-order rate constants of approximately 1.4 x 10(6) M-1s-1 and 1.9 x 10(8) M-1 s-1, respectively. Kinetic and spectral data and the results of similar studies with riboflavin indicate that both the flavin and heme moieties of cytochrome c-552 are reduced simultaneously on a millisecond time scale, with the transient formation of a protein-bound flavin anion radical. This is suggested to be due to rapid intramolecular electron transfer. Further, steric restrictions play an important role in the reduction reaction. Studies were conducted on the redox processes following photolysis of CO-ferrocytochrome c-552 in which the flavin was partly oxidized to resolve the kinetics of electron transfer between the heme and flavin of cytochrome c-552. Based on these results, we conclude that intramolecular electron transfer from ferrous heme to oxidized flavin occurs with a first-order rate constant of greater than 1.4 x 10(6) s-1.  相似文献   

12.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Bioelectrocatalytic reduction of H(2)O(2) catalysed by lignin peroxidase from Phanerochaete chrysosporium (LiP) was studied with LiP-modified graphite electrodes to elucidate the ability of LiP to electro-enzymatically oxidise phenols, catechols, as well as veratryl alcohol (VA) and some other high-redox-potential lignin model compounds (LMC). Flow-through amperometric experiments performed at +0.1 V vs. Ag|AgCl demonstrated that LiP displayed significant bioelectrocatalytic activity for the reduction of H(2)O(2) both directly (i.e., in direct electron transfer (ET) reaction between LiP and the electrode) and using most of studied compounds acting as redox mediators in the LiP bioelectrocatalytic cycle, with a pH optimum of 3.0. The bioelectrocatalytic reduction of H(2)O(2) mediated by VA and effects of VA on the efficiency of bioelectrocatalytic oxidation of other co-substrates acting as mediators were investigated. The bioelectrocatalytic oxidation of phenol- and catechol derivatives and 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulphonate) by LiP was independent of the presence of VA, whereas the efficiency of the LiP bioelectrocatalysis with the majority of other LMC acting as mediators increased upon addition of VA. Special cases were phenol and 4-methoxymandelic acid (4-MMA). Both phenol and 4-MMA suppressed the bioelectrocatalytic activity of LiP below the direct ET level, which was, however, restored and increased in the presence of VA mediating the ET between LiP and these two compounds. The obtained results suggest different mechanisms for the bioelectrocatalysis of LiP depending on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of LiP in biotechnological processes as solid-phase bio(electro)catalyst for decomposition/detection of recalcitrant aromatic compounds.  相似文献   

14.
A comparative study using laser flash photolysis of the kinetics of reduction and intramolecular electron transfer among the redox centers of chicken liver xanthine dehydrogenase and of bovine milk xanthine oxidase is described. The photogenerated reductant, 5-deazariboflavin semiquinone, reacts with the dehydrogenase (presumably at the Mo center) in a second-order manner, with a rate constant (k = 6 x 10(7) M-1 s-1) similar to that observed with the oxidase [k = 3 x 10(7) M-1 s-1; Bhattacharyya et al. (1983) Biochemistry 22, 5270-5279]. In the case of the dehydrogenase, neutral FAD radical formation is found to occur by intramolecular electron transfer (kobs = 1600 s-1), presumably from the Mo center, whereas with the oxidase the flavin radical forms via a bimolecular process involving direct reduction by the deazaflavin semiquinone (k = 2 x 10(8) M-1 s-1). Biphasic rates of Fe/S center reduction are observed with both enzymes, which are due to intramolecular electron transfer (kobs approximately 100 s-1 and kobs = 8-11 s-1). Intramolecular oxidation of the FAD radical in each enzyme occurs with a rate constant comparable to that of the rapid phase of Fe/S center reduction. The methylviologen radical, generated by the reaction of the oxidized viologen with 5-deazariboflavin semiquinone, reacts with both the dehydrogenase and the oxidase in a second-order manner (k = 7 x 10(5) M-1 s-1 and 4 x 10(6) M-1 s-1, respectively). Alkylation of the FAD centers results in substantial alterations in the kinetics of the reaction of the viologen radical with the oxidase but not with the dehydrogenase. These results suggest that the viologen radical reacts directly with the FAD center in the oxidase but not in the dehydrogenase, as is the case with the deazaflavin radical. The data support the conclusion that the environments of the FAD centers differ in the two enzymes, which is in accord with other studies addressing this problem from a different perspective [Massey et al. (1989) J. Biol. Chem. 264, 10567-10573]. In contrast, the rate constants for intramolecular electron transfer among the Mo, FAD, and Fe/S centers in the two enzymes (where they can be determined) are quite similar.  相似文献   

15.
H Yoshida  H Hanazawa 《Biochimie》1989,71(5):687-692
Ribonuclease (RNase) F1 was inactivated by incubation with an excess amount of iodoacetate at pH 5.5, 37 degrees C according to pseudo first-order kinetics. It was protected to various degrees, from inactivation by nucleotides, among which guanosine 2'-phosphate was most effective. The pseudo first-order rate constant was proportional to the reagent concentration, indicating that the reaction in reality follows second-order kinetics. The second-order rate constant was determined to be 25 x 10(-4) M-1 s-1. The inactivation rate was maximal at pH 5.5-6.0. When iodo[2-14C]acetate was used as the reagent, the stoichiometry of incorporation was determined to be 1.1 mol carboxymethyl group per mol of RNase F1 and glutamic acid residue 58 was assigned as the site of modification.  相似文献   

16.
To help settle controversy as to whether the chelating agent diethylenetriaminepentaacetate (DTPA) supports or prevents hydroxyl radical production by superoxide/hydrogen peroxide systems, we have reinvestigated the question by spectroscopic, kinetic, and thermodynamic analyses. Potassium superoxide in DMSO was found to reduce Fe(III)DTPA. The rate constant for autoxidation of Fe(II)DTPA was found (by electron paramagnetic resonance spectroscopy) to be 3.10 M-1 s-1, which leads to a predicted rate constant for reduction of Fe(III)DTPA by superoxide of 5.9 x 10(3) M-1 s-1 in aqueous solution. This reduction is a necessary requirement for catalytic production of hydroxyl radicals via the Fenton reaction and is confirmed by spin-trapping experiments using DMPO. In the presence of Fe(III)DTPA, the xanthine/xanthine oxidase system generates hydroxyl radicals. The reaction is inhibited by both superoxide dismutase and catalase (indicating that both superoxide and hydrogen peroxide are required for generation of HO.). The generation of hydroxyl radicals (rather than oxidation side-products of DMPO and DMPO adducts) is attested to by the trapping of alpha-hydroxethyl radicals in the presence of 9% ethanol. Generation of HO. upon reaction of H2O2 with Fe(II)DTPA (the Fenton reaction) can be inhibited by catalase, but not superoxide dismutase. The data strongly indicate that iron-DTPA can catalyze the Haber-Weiss reaction.  相似文献   

17.
K Kobayashi  Y Harada  K Hayashi 《Biochemistry》1991,30(34):8310-8315
The reactions of the monodehydroascorbate radical (As.-) with various biological molecules were investigated by pulse radiolysis. As.- reacted with both fully reduced and semiquinone forms of hepatic NADH-cytochrome b5 reductase with second-order rate constants of 4.3 x 10(6) and 3.7 x 10(5) M-1 s-1, respectively, at pH 7.0. In contrast, no reaction of As.- with ferrous cytochrome b5 could be detected by pulse radiolysis, whereas the oxidation of cytochrome b5 by As.- was observed by ascorbate-ascorbate oxidase method. This suggests that the rate constant of As.- with the ferrous cytochrome b5 must be several orders in magnitude smaller than that of the disproportionation of As.-. On the other hand, As.- reduced Fe3+EDTA with a second-order rate constant of 4.0 x 10(6) M-1 s-1 but did not reduce ferric hemoproteins such as metmyoglobin, methemoglobin, and cytochrome b5 by either the pulse radiolysis or the ascorbate-ascorbate oxidase method.  相似文献   

18.
Bioelectrocatalytic reduction of H2O2 catalysed by lignin peroxidase from Phanerochaete chrysosporium (LiP) was studied with LiP-modified graphite electrodes to elucidate the ability of LiP to electro-enzymatically oxidise phenols, catechols, as well as veratryl alcohol (VA) and some other high-redox-potential lignin model compounds (LMC). Flow-through amperometric experiments performed at +0.1 V vs. Ag|AgCl demonstrated that LiP displayed significant bioelectrocatalytic activity for the reduction of H2O2 both directly (i.e., in direct electron transfer (ET) reaction between LiP and the electrode) and using most of studied compounds acting as redox mediators in the LiP bioelectrocatalytic cycle, with a pH optimum of 3.0. The bioelectrocatalytic reduction of H2O2 mediated by VA and effects of VA on the efficiency of bioelectrocatalytic oxidation of other co-substrates acting as mediators were investigated. The bioelectrocatalytic oxidation of phenol- and catechol derivatives and 2,2′-azino-bis(3-ethyl-benzothiazoline-6-sulphonate) by LiP was independent of the presence of VA, whereas the efficiency of the LiP bioelectrocatalysis with the majority of other LMC acting as mediators increased upon addition of VA. Special cases were phenol and 4-methoxymandelic acid (4-MMA). Both phenol and 4-MMA suppressed the bioelectrocatalytic activity of LiP below the direct ET level, which was, however, restored and increased in the presence of VA mediating the ET between LiP and these two compounds. The obtained results suggest different mechanisms for the bioelectrocatalysis of LiP depending on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of LiP in biotechnological processes as solid-phase bio(electro)catalyst for decomposition/detection of recalcitrant aromatic compounds.  相似文献   

19.
Stopped-flow techniques were used to investigate the kinetics of the formation of manganese peroxidase compound I (MnPI) and of the reactions of MnPI and manganese peroxidase compound II (MnPII) with p-cresol and MnII. All of the rate data were obtained from single turnover experiments under pseudo-first order conditions. In the presence of H2O2 the formation of MnPI is independent of pH over the range 3.12-8.29 with a second-order rate constant of (2.0 +/- 0.1) x 10(6) M-1 s-1. The activation energy for MnPI formation is 20 kJ mol-1. MnPI formation also occurs with organic peroxides such as peracetic acid, m-chloroperoxybenzoic acid, and p-nitroperoxybenzoic acid with second-order rate constants of 9.7 x 10(5), 9.5 x 10(4), and 5.9 x 10(4) M-1 s-1, respectively. The reactions of MnPI and MnPII with p-cresol strictly obeyed second-order kinetics. The second-order rate constant for the reaction of MnPII with p-cresol is extremely low, (9.5 +/- 0.5) M-1 s-1. Kinetic analysis of the reaction of MnII with MnPI and MnPII showed a binding interaction with the oxidized enzymes which led to saturation kinetics. The first-order dissociation rate constants for the reaction of MnII with MnPI and MnPII are (0.7 +/- 0.1) and (0.14 +/- 0.01) s-1, respectively, when the reaction is conducted in lactate buffer. Rate constants are considerably lower when the reactions are conducted in succinate buffer. Single turnover experiments confirmed that MnII serves as an obligatory substrate for MnPII and that both oxidized forms of the enzyme form productive complexes with MnII. Finally, these results suggest the alpha-hydroxy acids such as lactate facilitate the dissociation of MnIII from the enzyme.  相似文献   

20.
The reduction kinetics of NADPH:cytochrome P-450 reductase have been investigated by the laser flash photolysis technique, using the semiquinone of 5-deazariboflavin (5-dRfH.) as the reductant. Transients observed at 470 nm at neutral pH indicated that the oxidized reductase was reduced via second-order kinetics with a rate constant of 6.8 X 10(7) M-1 s-1. The second-order rate constant corresponding to the formation of the protein-bound semiquinone (measured at 585 nm) was essentially the same as that obtained at 470 nm (7.1 X 10(7) M-1 s-1). Subsequent to this rapid formation of protein-bound semiquinone, a partial exponential decay was observed at 585 nm. The rate of this decay remained invariant with protein concentration between pH 5.0 and 7.0, and a first-order rate constant of 70 s-1 was obtained for this process. This is assigned to intramolecular electron transfer from FADH. to FMN. Prior reduction of the enzyme to the one-electron level led to a decrease in both the second-order rate constant for reduction (2 X 10(7) M-1 s-1) and the first-order intraflavin electron transfer rate constant (15 s-1). The protein-bound FAD moiety of FMN-depleted reductase was reduced by 5-dRfH. with a second-order rate constant that was identical with that observed with the native enzyme (6.9 X 10(7) M-1 s-1). However, with this species no significant decay of the FAD semiquinone was observed at 585 nm following its rapid formation, consistent with the above assignment of this kinetic process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号