首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible nitric oxide synthase (iNOS) has been implicated as a mediator of cellular toxicity in a variety of neurodegenerative disorders. Nitric oxide, which is generated in high quantities following induction of iNOS, combines with other oxygen radicals to form highly reactive, death-inducing compounds. Given the frequency of neuronal death due to neurodegenerative diseases, cerebral trauma, and stroke, it is important to study the mechanisms of regulation of iNOS in the brain. We demonstrated previously that angiotensin II (Ang II) decreases the expression of iNOS produced by bacterial endotoxin or cytokines in cultured astroglia prepared from adult rat brain. Here, we have addressed the mechanisms by which Ang II negatively modulates iNOS. The inhibitory effects of Ang II on lipopolysaccharide-induced expression of iNOS mRNA and protein and nitrite accumulation were mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate. Down-regulation of PKC produced by long-term treatment of astroglia with phorbol 12-myristate 13-acetate abolished the inhibitory effect of Ang II on lipopolysaccharide-stimulated expression of iNOS mRNA and nitrite accumulation. Finally, the reduction of lipopolysaccharide-induced nitrite accumulation by Ang II was attenuated by the selective PKC inhibitor chelerythrine. Collectively, these data indicate a role for PKC in the inhibitory actions of Ang II on iNOS expression in cultured astroglia.  相似文献   

2.
Although angiotensin II-induced venoconstriction has been demonstrated in the rat vena cava and femoral vein, the angiotensin II receptor subtypes (AT1 or AT2) that mediate this phenomenon have not been precisely characterized. Therefore, the present study aimed to characterize the pharmacological receptors involved in the angiotensin II-induced constriction of rat venae cavae and femoral veins, as well as the opposing effects exerted by locally produced prostanoids and NO upon induction of these vasomotor responses. The obtained results suggest that both AT1 and AT2 angiotensin II receptors are expressed in both veins. Angiotensin II concentration-response curves were shifted toward the right by losartan but not by PD 123319 in both the vena cava and femoral vein. Moreover, it was observed that both 10−5 M indomethacin and 10−4 M L-NAME improve the angiotensin II responses in the vena cava and femoral vein. In conclusion, in the rat vena cava and femoral vein, angiotensin II stimulates AT1 but not AT2 to induce venoconstriction, which is blunted by vasodilator prostanoids and NO.  相似文献   

3.
4.
The role of the vascular endothelium in modulating the arterial system has been widely investigated, but poorly explored at the venous site. In the present work, primary cultures of venous endothelium from rat Vena Cava (VC) and Portal Vein (PV) were established, characterized and analyzed according to their growth pattern and ability to produce nitric oxide (NO) and prostanoids (PGF2 α and PGI2), at basal state and after stimulation with Angiotensin II (Ang II, 1 μmol/L). Basal NO was detected in all examined cells in culture. Pre-incubation with Ang II increased NO production in cells from VC (but not in PV cultures), through activation of both AT1 and AT2 receptors. Both cultures exhibited detectable levels of PGF2 α at resting conditions, which were similarly enhanced by Ang II. Basal PGI2 levels were higher in PV, but increased after Ang II treatment in VC, with no further effect on PV cells. We conclude that endothelial cells from VC and PV exhibit important properties and react to Ang II, probably influencing the whole circulatory system. This experimental cell model gives support to further studies concerning intracellular pathways of the venous endothelium, analyzed in separate from the vascular smooth muscle wall.  相似文献   

5.
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally.  相似文献   

6.
7.
8.
Glioblastoma multiforme, the most common of the malignant gliomas, carries a dismal prognosis in spite of the most aggressive therapy and recent advances in molecular pathways of glioma progression. Although it has received relatively little attention in the setting of malignant gliomas, nitric oxide metabolism may be intimately associated with the disease process. Interestingly, nitric oxide has both physiological roles (e.g., neurotransmitter-like activity, stimulation of cyclic GMP), and pathophysiological roles (e.g., neoplastic transformation, tumor neovascularization, induction of apoptosis, free radical damage). Moreover, whether nitric oxide is neuroprotective or neurotoxic in a given disease state, or whether it enhances or diminishes chemotherapeutic efficacy in malignant neoplasia, is unresolved. This review discusses the multifaceted activity of nitric oxide with particular reference to malignant gliomas.  相似文献   

9.
肺纤维化是一组由多种因素引起的肺间质性病变,肺纤维化的发病机制迄今尚未完全清楚。近年来,发现在哺乳动物细胞的一氧化氮合酶催化合成的一氧化氮在肺纤维化的发生发展中发挥着重要的作用。因此,阐述一氧化氮与肺纤维化的关系,有着重要的理论意义和潜在的临床应用价值。  相似文献   

10.
Membrane-type I matrix metalloproteinase (MT1-MMP) has been previously reported to be up-regulated in human microvascular endothelial cell-1 line (HMEC) by elastin-derived peptides (elastokines). The aim of the present study was to identify the signaling pathways responsible for this effect. We showed that elastokines such as (VGVAPG)3 peptide and kappa elastin induced nitric oxide (NO) production in a time-, concentration- and receptor-dependent manner as it could be abolished by lactose and a receptor-derived competitive peptide. As evidenced by the use of NO synthase inhibitors, elastokine-mediated up-regulation of MT1-MMP and pseudotube formation on Matrigel required NO production through activation of the PI3-kinase/Akt/NO synthase and NO/cGMP/Erk1/2 pathways. Elastokines induced both PI3-kinase p110γ sub-unit, Akt and Erk1/2 activation, as shown by a transient increase in phospho-Akt and phospho-Erk1/2, reaching a maximum after 5 and 15 min incubation, respectively. Inhibitors of PI3-kinase and MEK1/2 suppressed elastokine-mediated MT1-MMP expression at both the mRNA and protein levels, and decreased the ability of elastokines to accelerate pseudotube formation. Besides, elastokines mediated a time- and concentration-dependent increase of cGMP, suggesting a link between NO and MT1-MMP expression. This was validated by the use of a guanylyl cyclase inhibitor, a NO donor and a cGMP analog. The guanylyl cyclase inhibitor abolished the stimulatory effect of elastokines on MT1-MMP expression. Inversely, the cGMP analog, mimicked the effect of both elastokines and NO donor in a concentration- and time-dependent manner. Overall, our results demonstrated that such elastokine properties through NO and MT1-MMP may be of importance in the context of tumour progression.  相似文献   

11.
Angiotensin II (Ang II), one of the main vasoactive hormones of the renin-angiotensin system, contributes to the development and progression of atherosclerosis by inducing vascular smooth muscle cells (VSMCs) migration. Although previous studies have shown that Ang II upregulates low density lipoprotein receptor-related protein 1 (LRP1) expression in VSMCs and increases VSMCs migration, the role of LRP1 in Ang II-induced VSMCs migration remains unclear. Here, we reveal a novel mechanism by which LRP1 induces the expression of matrix metalloproteinase 2 (MMP2) and thereby promotes the migration of rat aortic SMCs (RAoSMCs). Knockdown of LRP1 expression greatly decreased RAoSMCs migration, which was rescued by forced expression of a functional LRP1 minireceptor, suggesting that LRP1 is a key regulator of Ang II-induced RAoSMCs migration. Inhibition of ligand binding to LRP1 by the specific antagonist receptor-associated protein (RAP) also led to reduced RAoSMCs migration. Because MMPs play critical roles in RAoSMCs migration, we examined the expression of several MMPs and found that the expression of functional MMP2 was selectively increased by Ang II treatment and decreased in LRP1-knockdown RAoSMCs. More interestingly, reduced MMP2 expression in LRP1-knockdown cells was completely rescued by exogenous expression of mLRP4, suggesting that MMP2 is a downstream regulator of LRP1 in Ang II-induced RAoSMCs migration. Together, our data strongly suggest that LRP1 promotes the migration of RAoSMCs by regulating the expression and function of MMP2.  相似文献   

12.
Increasing interest in the study of nitric oxide (NO·) in may facets of biological research necessitates a search for accurate techniques to directly identify the free radical. One recently employed strategy for NO· detection is the method of electron spin resonance (ESR) used in combination with nitrone and nitroso spin traps. Applying this technique to our studies with nitric oxide synthase (NOS), we found that NO· generated directly from the enzyme system could not be detected. Further investigation revealed that 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) inhibited NO· generation by NOS at concentrations used fro spin trapping. Reexamining the ability of various nitrones and DBNBS to spin trap authentic NO· dissolved in buffer, we obtained ESR spectra similar to those previously reported for the spin trap DBNBS. However, continuing our studies with 15NO· and N-hydroxylamine, we found these spectra to be artifactual. Our results emphasize the need to synthesized new spin traps, since currently available compounds are not capable of spin trapping NO· generated by NOS.  相似文献   

13.
Nitrosothiols are increasingly regarded as important participants in a range of physiological processes, yet little is known about their biological generation. Nitrosothiols can be formed from the corresponding thiols by nitric oxide in a reaction that requires the presence of oxygen and is mediated by reactive intermediates (NO2 or N2O3) formed in the course of NO autoxidation. Because the autoxidation of NO is second order in NO, it is extremely slow at submicromolar NO concentrations, casting doubt on its physiological relevance. In this paper we present evidence that at submicromolar NO concentrations the aerobic nitrosation of glutathione does not involve NO autoxidation but a reaction that is first order in NO. We show that this reaction produces nitrosoglutathione efficiently in a reaction that is strongly stimulated by physiological concentrations of Mg2+. These observations suggest that direct aerobic nitrosation may represent a physiologically relevant pathway of nitrosothiol formation.  相似文献   

14.
Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction.  相似文献   

15.
Nitric oxide is a potent modulator of mitochondrial respiration, ATP synthesis, and KATP channel activity. Recent studies show the presence of a potentionally new isoform of the nitric oxide synthase (NOS) enzyme in mitochondria, although doubts have emerged regarding the physiological relevance of mitochondrial NOS (mtNOS). The aim of the present study were to: (i) examine the existence and distribution of mtNOS in mouse tissues using three independent methods, (ii) characterize the cross-reaction of mtNOS with antibodies against the known isoforms of NOS, and (iii) investigate the effect of hypoxia on mtNOS activity. Nitric oxide synthase activity was measured in isolated brain and liver mitochondria using the arginine to citrulline conversion assay. Mitochondrial NOS activity in the brain was significantly higher than in the liver. The calmodulin inhibitor calmidazolium completely inhibited mtNOS activity. In animals previously subjected to hypoxia, mtNOS activity was significantly higher than in the normoxic controls. Antibodies against the endothelial (eNOS), but not the neuronal or inducible isoform of NOS, showed positive immunoblotting. Immunogold labeling of eNOS located the enzyme in the matrix and the inner membrane using electron microscopy. We conclude that mtNOS is a constitutively active eNOS-like isoform and is involved in altered mitochondrial regulation during hypoxia.  相似文献   

16.
We have applied photoaffinity labelling methods combined with site-directed mutagenesis towards the two principal angiotensin II (AnglI) receptors AT1 and AT2 in order to determine contact points between AngII and the two receptors. We have first identified the receptor contact points between an N- and a C-terminal residue of the AngII molecule and the AT1 receptor and constructed with this stereochemical restriction a molecular model of AT1. A similar approach with a modified procedure of photoaffinity labelling has allowed us now to determine contact points also in the AT2 receptor. Molecular modelling of AT2 on the rhodopsin scaffold and energy minimisation of AngII binding into this AT2 model produced a model strikingly similar to the AT11 structure. Superposition of the experimentally obtained contact points of AngII with AT2 upon this model revealed excellent congruence between the experimental and modelling results. Conclusions: (i) athough AT1 and AT2 have quite low sequence homology, they both bind AngII with similar affinity and in an almost identical fashion, as if the ligand dictates the way it has to be bound, and (ii) in its bound form, AngII adopts an extended conformation in both AT1 and AT2, contrary to all previous predictions.  相似文献   

17.
18.
Excessive physical exercise may lead to disturbance of the entire homeostasis in the body, including damage not only in skeletal muscles but also in many distant organs. The mechanisms responsible for the exercise-induced changes could include oxidative stress or angiotensin II. We previously showed that acute exercise led to apoptosis in kidney but not as a result of oxidative stress. In this study, we examined the role of angiotensin II and its AT1 and AT2 receptors in mediation of exercise-induced apoptosis in kidney. We clearly demonstrated that acute physical exercise induced apoptosis in renal cells of distal convoluted tubuli and cortical and medullary collecting ducts. Moreover, the cells displayed an increased expression of both AT1 and AT2 angiotensin II receptors and of p53 protein. The results suggest that angiotensin II could upregulate p53 expression in renal distal convoluted tubular cells and in the cells collecting ducts via both AT1 and AT2 receptors, which might be the crucial apoptosis-mediating mechanism in kidneys after excessive exercise.  相似文献   

19.
Abstract: Pseudomonas aeruginosa, P. stutzeri and Azospirillum brasilense showed highest NO production rates and NO consumption rate constants when anaerobically grown cells were tested under anaerobic conditions. Aerobic assay conditions resulted in 20–75-fold lower NO production rates. NO consumption rate constants, however, decreased by less than a factor of four. NO consumption activity was observed even in aerobically grown P. aeruginosa , provided the assay was done under anaerobic conditions. Obviously, NO consumption was less O2-sensitive than NO production so that compensation between production and consumption occurred at lower NO mixing ratios under aerobic than under anaerobic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号