首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1984, Helene (Am. J. Physics 52:656) and Alexander (Am. Scientist 72:348–354) presented equations which purported to explain how lower limb length limited maximum walking speed in humans. The equations were based on a simplified model of human walking in which the center of mass (CoM) “vaults” over the supporting leg. Increasing walking speed by increasing stride frequency or stride length would increase the upward acceleration of the CoM in the first half of stance phase, to the point that it would be greater than the downward pull of gravity, and the individual would become airborne. This constitutes running by most definitions. While these models ignored various mechanical factors, such as knee flexion during midstance, that reduce the vertical movement of the CoM, the general idea is plausible inasmuch as the CoM of the body does oscillate vertically with each step. One hypothesis tested here is whether it is indeed the interaction between the pull of gravity and the individual's own upward acceleration that determines at what speed (or cadence) he changes from walking to running. Another hypothesis considered is that increased lower limb length (L) was selected for in early hominids, because of the locomotor advantages of longer lower limbs. Results indicate, however, that while L was clearly related to maximum possible walking speed, it was not an important factor in determining maximum “comfortable” walking speed. These and other results from the recent literature suggest that increased lower limb length provided no selective advantage in locomotion, and other explanations should be sought. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
5.
6.
The anteroposterior position of the foramen magnum distinguishes living Homo sapiens from apes, and has been used as evidence for the hominid status of numerable fossils in the history of human paleontology. During the past decade, foramen magnum position has been cited as evidence of the hominid status of Ardipithecus and Sahelanthropus. Specifically, the basion of Ardpithecus is reported to be inline with the bicarotid chord, while the basion of Sahelanthropus is reported to both touch the biporion chord and intersect the bicarotid chord. In order to assess the effectiveness of anteroposterior foramen magnum position in distinguishing hominids from nonhominid apes, this study examined whether or not the positions of biporion and bicarotid relative to basion sufficiently distinguished Pan troglodytes from recent Homo sapiens and Plio-Pleistocene hominids. The distances from basion to the biporion chord (BSBIP) and from basion to the bicarotid chord (BSBIC) were measured on samples of chimpanzee (n = 69) and recent human (n = 42) crania and a sample of Plio-Pleistocene hominid fossils (n = 8). The data were used to test the hypothesis that BSBIP and BSBIC measurements do not sufficiently distinguish P. troglodytes from hominids. While basion to biporion (BSBIP) does not effectively distinguish P. troglodytes from Plio-Pleistocene hominids and humans when used univariately, basion to bicarotid (BSBIC), when used univariately or bivariately with BSBIP, can be used to test whether or not an unknown specimen is a hominid. These results are used to evaluate the hominid status of Ardipithecus and Sahelanthropus.  相似文献   

7.
8.
9.
Fifty-eight new fossil hominids from Plio-Pleistocene sediments east of Lake Turkana, Kenya, are described. They include cranial, mandibular, dental, and postcranial parts. Some are illustrated.  相似文献   

10.
Cranial and femoral fragments of five hominids were recovered in 1932 from exposures of Middle Pleistocene lake-beds at Kanjera on the S. shore of the Kavirondo Gulf, Kenya. L. S. B. Leakey considered that the hominids were contemporaneous with the fauna of the lake-beds, and this view seemed to be supported by results of applying the fluorine method of relative dating. Comparison of the hominids and fauna by means of radiometric assay indicates that the hominids are considerably younger.  相似文献   

11.
The Atapuerca railway Trench and Ibeas sites near Burgos, Spain, are cave fillings that include a series of deposits ranging from below the Matuyama/Bruhnes reversal up to the end of Middle Pleistocene. The lowest fossil-bearing bed in the Trench contains an assemblage of large and small Mammals includingMimomys savini, Pitymys gregaloides, Pliomys episcopalis, Crocuta crocuta, Dama sp. and Megacerini; the uppermost assemblage includesCanis lupus, Lynx spelaea, Panthera (Leo) fossilis, Felis sylvestris, Equus caballus steinbeimensis, E.c. germanicus, Pitymys subterraneus, Microtus arvalis agrestis, Pliomys lenki, and alsoPanthera toscana, Dicerorbinus hemitoechus, Bison schoetensacki, which are equally present in the lowest level. The biostratigraphic correlation and dates of the sites are briefly discussed, as are the paleoclimatic interpretation of the Trench sequences. Stone artifacts are found in several layers; the earliest occurrences correspond to the upper beds containingMimomys savini. A set of preserved human occupation floors has been excavated in the top fossil-bearing beds. The stone-tool assemblages of the upper levels are of upper-medial Acheulean to Charentian tradition. The rich bone breccia SH, in the Cueva Mayor-Cueva del Silo, Ibeas de Juarros, is a derived deposit, due to a mud flow that dispersed and carried the skeletons of many carnivores and humans. The taxa represented are:Ursus deningeri (largely dominant),Panthera (Leo) fossilis, Vulpes vulpes, Homo sapiens var. Several traits of both mandibular and cranial remains are summarized. Preliminary attempts at dating suggest that the Ibeas fossil man is older than the Last Interglacial, or oxygen-isotope stage 5.  相似文献   

12.
13.
Arboreality and bipedality in the Hadar hominids   总被引:3,自引:0,他引:3  
Numerous studies of the locomotor skeleton of the Hadar hominids have revealed traits indicative of both arboreal climbing/suspension and terrestrial bipedalism. These earliest known hominids must have devoted part of their activities to feeding, sleeping and/or predator avoidance in trees, while also spending time on the ground where they moved bipedally. In this paper we offer new data on phalangeal length and curvature, morphology of the tarsus and metatarsophalangeal joints, and body proportions that further strengthen the argument for arboreality in the Hadar hominids. We also provide additional evidence on limb and pedal proportions and on the functional anatomy of the hip, knee and foot, indicating that the bipedality practiced at Hadar differed from that of modern humans. Consideration of the ecology at Hadar, in conjunction with modern primate models, supports the notion of arboredality in these earliest australopithecines. We speculate that selection for terrestrial bipedality may have intensified through the Plio-Pleistocene as forests and woodland patches shrunk and the need arose to move increasingly longer distances on the ground. Only with Homo erectus might body size, culture and other factors have combined to 'release' hominids from their dependence on trees.  相似文献   

14.
Stride length and speed for adults, children, and fossil hominids   总被引:5,自引:0,他引:5  
Research workers studying the relationship between stride length (L) and speed (u) in human walking have often expressed their results as multiples of stature (h): they have given values of L/h and u/h. They have claimed or implied that this takes account of differences of body size and that L/h should be the same function of u/h for people of all sizes. It is shown that this is not true for comparisons of children with adults. Further, it is argued by dimensional analysis that u/square root gh is a more appropriate speed parameter that u/h (g is the acceleration of free fall). It is shown that L/h is approximately the same function of u/square root gh for children aged 4 or more years as for adults. The empirical relationship between L/h and u/square root gh is used to make new estimates of walking speed for the early hominid footprints found at Laetoli, Tanzania. The speeds obtained are equivalent to mean speeds of human walking observed in small towns (i.e., they give approximately equal values of u/square root gh).  相似文献   

15.
Shrewsbury  M. M.  Sonek  A. 《Human Evolution》1986,1(3):233-242
Human Evolution - Four Types of precision holding in the human hand have been identified and described in accordance with the contrasting regional properties of a differentiated ungual pulp of the...  相似文献   

16.
17.
18.
19.
Quantification of individual crown features allows maximization of information retrieval from isolated hominid molars. The Lukeino specimen demonstrates phenetic affinity to Pan; the Lothagam fossil appears closer to a hypothetical ancestral hominid morphotype than the Laetolil specimens. Consideration of 41 metric features in a cladistic framework establishes Australopithecus afarensis as the sister taxon of Homo and of later australopithecines.  相似文献   

20.
Aspects of life history, such as processes and timing of development, age at maturation, and life span are consistently associated with one another across the animal kingdom. Species that develop rapidly tend to mature and reproduce early, have many offspring, and exhibit shorter life spans (r-selection) than those that develop slowly, have extended periods of premature growth, mature later in life, reproduce later and less frequently, have few offspring and/or single births, and exhibit extended life spans (K-selection). In general, primates are among the most K-selected of species. A suite of highly derived life history traits characterizes humans. Among these are physically immature neonates, slowed somatic development both in utero and post-natally, late attainment of reproductive maturity and first birth, and extended post-mature survival. Exactly when, why, and through what types of evolutionary interactions this suite arose is currently the subject of much conjecture and debate. Humankind's biocultural adaptations have helped to structure human life history evolution in unique ways not seen in other animal species. Among all species, life history traits may respond rapidly to alterations in selective pressures through hormonal processes. Selective pressures on life history likely varied widely among hominids and humans over their evolutionary history. This suggests that current patterns of human growth, development, maturation, reproduction, and post-mature survival may be of recent genesis, rather then long-standing adaptations. Thus, life history patterns observed among contemporary human and chimpanzee populations may provide little insight to those that existed earlier in hominid/human evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号