首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The phenology of native brachycerine weevil species at seven pasture sites in Otago, Canterbury and Waikato was studied by regular quantitative sampling of adults. Weevils were identified to species, and dissected to record reproductive status and parasitism by introduced braconid parasitoids in the genus Microctonus. Climatic data assisted in the interpretation of some population density patterns. Weevil population density was estimated for periods of two to five years at the selected sites. Species in the Entimini (species of Irenimus and Nicaeana) were generally univoltine, with adults emerging in winter‐spring. The main period of reproductive activity was spring, and parasitism by Microctonus aethiopoides reached its highest incidence in January. Low level parasitism of native weevil species by M. aethiopoides was detected at all sites, and by M. hyperodae at two sites. At one site in Otago, parasitism by M. aethiopoides was higher and could have affected the population density of Irenimus aemulator (Broun) and Nicaeana sp. Most parasitism occurred after the main reproductive period of weevils in spring, but a putative second generation in some species might be more affected by parasitoid attack. A native rhytirhinine species, Steriphus variabilis, differed from the entimines because adults emerged in autumn and spring, and may be bivoltine. Mechanisms of M. aethiopoides parasitism of non‐target species in the field are discussed.  相似文献   

2.
A laboratory study of aspects of parasitoid host acceptance, suitability and physiological regulation in natural and novel host species was carried out to investigate the degree of variability encountered with different hosts and to determine the value of such observations in host range determination. The parasitoid Microctonus aethiopoides Loan was exposed to a natural host, Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) and three novel hosts, the New Zealand native Nicaeana cervina Broun, the introduced weed biological control agent Rhinocyllus conicus (Froehlich), and a congeneric pest species, Sitona lepidus Gyllenhal (all Coleoptera: Curculionidae). Per cent parasitism of these species was 54%, 43%, 39% and 0%, respectively. The results indicated that for both S. discoideus and R. conicus more males than females were parasitized (69% cf. 45%, and 49% cf. 32% respectively) but host size was not a significant factor. Overall, superparasitism was recorded in about 29% of parasitized weevils and there was evidence that host discrimination to avoid superparasitism occurred in the natural host. Conversely, superparasitism occurred more frequently than would be expected in N. cervina (42%) coupled with higher survival of larvae in superparasitized hosts in this species. The frequency distribution of attack of R. conicus by M. aethiopoides was not different from random. Parasitoid development was more rapid in the natural host, S. discoideus, and parasitoid size was positively correlated with host size. There was a strong positive relationship between parasitoid larval survival and the presence of teratocytes in all hosts. Host fecundity and fertility were reduced by parasitism for most species, and in some cases, by exposure to parasitoids in the absence of detectable parasitism. It was concluded that laboratory observations can provide useful information on the compatibility between host and parasitoid which can complement traditional host range tests to predict field host range.  相似文献   

3.
A laboratory study investigated development of teratocytes derived from the parasitoid Microctonus aethiopoides Loan in the natural host, Sitona discoideus Gyllenhal, and in three novel hosts, the introduced weed biological control agent Rhinocyllus conicus (Froehlich), and two New Zealand native species Nicaeana cervina Broun and Irenimus stolidus Broun. Weevils were exposed to parasitoids and then examined 6, 10 and 15 days post-parasitism for parasitoid stage and size, and teratocyte number and size. In all hosts, teratocyte numbers decreased and size increased as parasitoid development progressed, although 6 days after parasitism, fewer, larger teratocytes were found in I. stolidus than S. discoideus or N. cervina. In weevils containing second-third instar parasitoid larvae, the most permissive hosts, S. discoideus and N. cervina contained more teratocytes than the least permissive hosts I. stolidus and R. conicus. Host gender influenced some aspects of parasitoid and teratocyte development. Total teratocyte volume was greater in female than male S. discoideus at all sampling times, and at 10 days post-parasitism in N. cervina. A possible relationship between host suitability and teratocyte development is discussed.  相似文献   

4.
Microctonous aethiopoides Loan has been introduced into New Zealand to control the lucerne pest Sitona discoideus Gyllenhal (Coleoptera: Curculionidae). Sitona lepidus Gyllenhal (Coleoptera: Curculionidae) a pest of clover ( Trifolium spp.), has recently established in New Zealand. Laboratory experiments to test the potential of M. aethiopoides to parasitize S. lepidus has resulted in very low levels of parasitism. To investigate whether there were behavioural or physiological barriers to successful parasitism, two experiments were conducted using the insect pathogenic bacterium. Serratia marcescens Bizio as a marker for parasitoid ovipositor penetration. Firstly, M. aethiopoides 'treated' with S. marcescens were exposed to weevils and rapid weevil mortality was used to indicate ovipositor penetration. Up to 50% mortality of S. lepidus occurred, which was comparable with mortality observed in the permissive host Listronotus bonariensis . Dissection of S. lepidus exposed to parasitoids treated with distilled water showed that ca. 21% contained parasitoid eggs of which 98% were nonviable. In the second experiment, exposure periods of 24, 48 and 72 h to S. marcescens -treated parasitoids produced an increase in S. lepidus mortality of 14, 28 and 38%, respectively. There was 3% successful parasitoid development in weevils exposed for 72 h to parasitoids treated with distilled water. M. aethiopoides has been shown to develop successfully in a wide range of non-target weevil species both in the laboratory and field. Possible reasons for poor survival of M. aethiopoides immature stages in S. lepidus are discussed.  相似文献   

5.
A simple immunological assay was developed as an alternative to the dissection/visualization method for detecting the presence of the parasitoid, Microctonus aethiopoides Loan, in the alfalfa weevil, Hypera postica (Gyllenhal). The dot-blot assay was validated using laboratory-reared and field-collected adult weevils of known parasitization status. The dot-blot assay was also used to estimate the developmental stage of the parasitoid within parasitized adult hosts. The assay results can be used to forecast parasitoid emergence dates and estimate the parasitism rate of M. aethiopoides in alfalfa weevil populations.  相似文献   

6.
Abstract  Cleopus japonicus Wingelmüller (Coleoptera: Curculionidae) is being considered for release to control buddleia Buddleja davidii in New Zealand. As part of the pre-release testing, Moroccan and Irish biotypes of the solitary endoparasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae) were evaluated for potential non-target impacts on adult C. japonicus should release occur. Laboratory experiments evaluated both the behavioural and physiological suitability of C. japonicus to both biotypes of the parasitoid. Parasitoid behavioural attraction was assessed using the pathenogenic bacterium Serratia marcescens (Enterobactereaceae), as an indicator of ovipositor penetration. Physiological suitability was assessed by comparing parasitism of C. japonicus with the natural hosts of the respective parasitoid biotypes. The parasitoid-bacteria study showed that C. japonicus was behaviourally acceptable to both Moroccan and Irish M. aethiopoides , with the two experiments producing 34% and 8% mortality, respectively. Cleopus japonicus did not support development of either Moroccan or Irish M. aethiopoides biotypes. None of the weevils dissected at the end of the experiment contained immature parasitoids. Comparison between unexposed and parasitoid-exposed C. japonicus found no difference in premature mortality during the experiment nor in the number of fully reproductive females at its conclusion. The results of this study predict that should C. japonicus be released, the potential impact of M. aethiopoides on field populations will be negligible.  相似文献   

7.
Virus-like particles (MaVLP) have been discovered in the ovarial epithelial cells of the solitary, koinobiont, endoparasitoid, Microctonus aethiopoides Loan (Hymenoptera: Braconidae) introduced to New Zealand originally from Morocco to control the lucerne pest Sitona discoideus Gyllenhal (Coleoptera: Curculionidae). MaVLP have been found in all females examined. It has been suggested, although not demonstrated, that like many other such VLP found in parasitoids, MaVLP might play a role in host immunosuppression. Since another biotype of M. aethiopoides from Ireland has been proposed for introduction to control the white clover pest, Sitona lepidus Gyllenhal, in New Zealand, it was considered that females from this biotype warranted transmission electron microscope examination for VLP. No VLP were observed in ovarian tissues of specimens collected from three different locations in Ireland. Similarly, none were found in M. aethiopoides sourced from France, Wales, and Norway. These observations are discussed in relation to quarantine host specificity tests with the Irish biotype, which found that the host range of the Irish biotype is likely to be less extensive than that of the Moroccan biotype already in New Zealand.  相似文献   

8.
Microctonus hyperodae is a solitary endoparasitoid of the Argentine stem weevil, Listronotus bonariensis. Early investigation into the biology of the parasitoid indicated that there was no discrimination between parasitized and unparasitized hosts. However, dissection data from two experiments were analyzed according to three mathematical models. Model I was based on the Poisson distribution and assumed random selection of hosts. The host discrimination model (model II) assumed that parasitized hosts had reduced attractiveness to searching parasitoids. A competition model (model III) made the assumption that competition between the early immature parasitoid stages led to premature mortality, which was not accounted for in the dissection results. The dissection data indicated statistically significant departure from the Poisson model. Results from the laboratory experiment indicated that host discrimination explained the results more accurately than parasitoid larval competition. Models II and III both provided adequate fits to the field data, although the departure from the observed data was greatest for the competition model. Both intra- and inter-ecotypic host recognition were evident, and there was some indication that clonal recognition took place. This is the first evidence of host discrimination by a member of the genus Microctonus. It has provided further indication of the success of M. hyperodae as a biological control agent.  相似文献   

9.
Abstract  The braconid parasitoid Microctonus aethiopoides Loan has been released in Australia and New Zealand for biological control of the lucerne pest Sitona discoideus Gyllenhal. In New Zealand, the parasitoid attacks a number of endemic weevil species. A survey of Curculionoidea found in and near lucerne in south-eastern Australia was carried out to investigate whether similar non-target parasitism was occurring, and to relate this to levels of parasitism found in the target host, S. discoideus . Some of the original M. aethiopoides release sites were particularly targeted in the survey of 25 sites in Victoria, New South Wales and South Australia. Almost 2500 weevils were collected, of which over 90% were S. discoideus , with the remaining 197 other weevils comprising 29 species found at 15 of the 25 sites. Parasitism of S. discoideus by M. aethiopoides occurred at 12 lucerne sites, with levels ranging from 0 to 25%. A single incidence of parasitism of a species of an Australian native weevil Prosayleus sp. by M. aethiopoides was recorded. No parasitism of any other weevil species was observed. The taxonomic affinities between Sitona and native Australian and New Zealand weevils are discussed, concluding that non-target host range in M. aethiopoides may be determined more by ecological factors than by taxonomic affinities among its hosts.  相似文献   

10.
A predictive phenological model is described for the parasitoid Microctonus hyperodae, introduced to New Zealand as a potential biological control agent against Argentine stem weevil Listronotus bonariensis. The model is based on development/temperature relationships obtained from experiments on the parasitoid in quarantine prior to its release, allowing early predictions of its phenology in different parts of the target pest's New Zealand range. In particular the model was used to predict the number of parasitoid generations each year, the degree of temporal synchrony between parasitoid adults and the susceptible adult pest stage, the order of parasitism and reproduction in the pest's life cycle as a possible basis for a simplified, discrete host/parasitoid population model, and the likely significance of ecotypic differences in development and diapause characteristics of the parasitoid. These applications demonstrate the potential for simple models to help in climate matching of classical biological control agents and estimation of their interaction with pest dynamics, using data obtainable prior to their introduction and release. In addition the model proved useful as a decision aid during the release programme, by indicating the likely effects of unusual weather and the need or otherwise for further parasitoid releases.  相似文献   

11.
The European biotype of the parasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae) is being considered for release against Sitona lepidus Gyllenhal (Coleoptera: Curculionidae) in New Zealand. Host specificity was evaluated in the laboratory using both endemic and introduced weed biological control curculionid species, with 12 no-choice and three choice experiments carried out comparing the S. lepidus and test weevils. Two further no-choice tests used the Moroccan M. aethiopoides biotype to compare attack rate between European and Moroccan M. aethiopoides, the latter released in 1982 to control the lucerne pest S. discoideus. Across all experiments, total parasitism of S. lepidus was 69% compared with 15% for the test weevils. European M. aethiopoides was able to develop in the native weevils Irenimus aequalis, Nicaeana cervina, Catoptes cuspidatus, Protolobus porculus and Steriphus variabilis with parasitism rates of 13, 28, 2, 7 and 8%, respectively. These levels were significantly less than those in the corresponding S. lepidus control. Total parasitism of I. aequalis and C. cuspidatus increased significantly in the presence of S. lepidus than recorded under no-choice conditions. The presence of European M. aethiopoides caused minor, if any, test weevil mortality prior to the onset of prepupal emergence and there was no significant reproductive suppression in parasitoid-exposed test weevils. Parasitism of the introduced weed control agent R. conicus by European M. aethiopoides was significantly lower (1.1%) compared to the Moroccan biotype (47.5%). Based on these and other experiments, should the European M. aethiopoides be released as a biological control agent of S. lepidus, its ecological impacts are likely to be less severe than those already exhibited by the Moroccan M. aethiopoides.  相似文献   

12.
French and Moroccan populations of the parasitoid Microctonus aethiopoides Loan were studied in the laboratory for their host selection, mating behavior, and reproductive success. The French strain, collected on Hypera postica (Gyllenhal), although capable of parasitizing and producing viable offspring on Sitona weevils, preferred Hypera weevils, its known target host. The Moroccan strain, collected on Sitona discoideus Gyllenhal, exhibited host specificity for Sitona. A partial reproductive isolation was observed between the two strains. Moroccan females mated more frequently with French males than did French females with Moroccan males. The pre-copulation time for mating pairs of opposite strains was significantly longer than that for mating pairs of the same strain. There was no significant difference in copulation time nor in larval and pupal duration between French and Moroccan strains. In summary, the French and Moroccan strains of M. aethiopoides are clearly separable by biological, behavioral, and morphometric traits and the preferred host for Hypera is the French strain and Sitona for the Moroccan strain. Consequently, geographic location and host source become important when considering this parasitoid as a potential biological control agent.  相似文献   

13.
The South American curculionid Listronotus bonariensis (Kuschel) is an important pest of pastures in New Zealand. Population census data were gathered for L. bonariensis in northern New Zealand pastures during 1980-1983 in the absence of parasitism and again in 1991-1996 after the introduction and establishment of the braconid parasitoid Microctonus hyperodae Loan as a biological control agent. M. hyperodae achieved high rates of parasitism, with 75-90% of overwintering L. bonariensis parasitized within 3 yr of the parasitoid establishing at a site. Multistratum analysis of variance (ANOVA), with allowance for variation in host plant resource (numbers of Neotyphodium-free grass tillers), indicated reduction in the abundance of L. bonariensis life stages in the early part of life cycle. Although providing evidence for suppression of L. bonariensis, these analyses indicated the regulatory role of M. hyperodae was weak because L. bonariensis populations continued to exhibit marked intergenerational variability in abundance. Analyses of life tables indicated larval + pupal survival contributed most to intergenerational changes in abundance, irrespective of presence or absence of M. hyperodae. However, the density dependence of the stage survivals was modified in the presence of the parasitoid, with loss of density-dependent mortality in overwintering adults and increased density dependence in population natality. Regression analyses indicated dual contribution of parasitism and host plant resource to regulation of population natality and population trend in L. bonariensis. We conclude that M. hyperodae is a useful adjunct to host plant resistance in reducing the economic status of L. bonariensis populations in northern New Zealand pastures.  相似文献   

14.
The thelytokous parasitoid, Microctonus hyperodae Loan, was collected from eight South American locations and introduced to New Zealand in 1991 for biological control of Argentine stem weevil, Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). Parasitoids from each population were released in equal numbers at each New Zealand site to give them the same opportunities to establish. Population markers have been sought to identify the South American geographic populations that have become most successful in New Zealand. These would assist in determining the importance of concepts such as climate matching and host-parasitoid coevolution to the establishment of natural enemies in new regions for biological control. Vertical polyacrylamide electrophoresis was used to survey 16 enzymes and ten calcium binding proteins, and this paper reports variation at three putative loci. Malate dehydrogenase, a dihydrolipoamide dehydrogenase isozyme and a calcium binding protein exhibited clear genetic variation, each with two alleles. All M. hyperodae isofemale lines from east of the Andes mountains shared one genotype, all but one from west of the Andes shared another, while a population from within the Andes contained both genotypes. This variation was highly congruent with previously described morphometric variation. At two loci, the maintenance of heterozygotes, and the absence of homozygotes, within isofemale lines suggested M. hyperodae thelytoky is apomictic.  相似文献   

15.
Karyotypes of three species, Brachyderes incanus, Brachysomus setiger and Paophilus afflatus, belonging to the tribe Brachyderini, were studied using C-banding technique. The species share the same chromosome number 2n = 22 and meioformula n = 10+Xy(p) at all metaphase 1 plates of spermatid division. Some differences between karyotypes were observed in terms of centromere positions and C-band sizes. Most chromosomes are meta- or submetacentric and form a graded series in respect to length. The chromosomes resemble one another in having a rather small amount of heterochromatin restricted to the pericentromeric region and visible as dark stained blocks mainly during early stages of nuclear division. Only in Brachyderes incanus do larger bands occur at mitotic metaphase and diakinesis. These cytogenetic data are in agreement with karyological findings obtained in other species of Brachyderini so far examined.  相似文献   

16.
A novel type of emergence trap capable of capturing and separating 'live' insect catches is described. The trap was shown to be 96% efficient at capturing newly emergent adult Hylobius abietis Linnaeus on bare ground and at least 82% efficient over stumps on a weedy Sitka spruce clearfell. The trap was more than 80% efficient at capturing Bracon hylobii Ratzeburg, the most commonly found parasite of H. abietis. It was also shown to be effective at capturing adult H. abietis of unknown age (98%), indicating that it could also be used to trap out H. abietis from known areas to estimate on-site overwintering densities. Fifty-four percent of newly emergent weevils were captured within 12 h of release on bare mineral soils. Forty-two percent of unknown age weevils and 52% of parasites were captured within 1 h of their release within the trap. The rapid rates of capture mean that when traps are checked frequently they can be used to reflect accurately temporal patterns of emergence. Its potential for use in control programmes and ecological studies is discussed.  相似文献   

17.
Lythrum salicaria L., purple loosestrife, an invasive Eurasian perennial, is degrading wetlands across temperate North America. Chemical, physical, and mechanical methods failed to provide long-term control. Therefore, four host-specific insect species (two leaf feeders, a root feeder, and a flower feeder) were introduced as biological control agents. To increase the availability of adults of the root feeding weevil Hylobius transversovittatus Goeze for field releases, we developed a semiartificial diet. Suitability of different diet formulations (varying vitamin mixes, salt mixes, antimicrobials, water content, root content) and temperatures for larval development were evaluated. We also monitored how rearing on artificial diet and the number of larvae per container affected larval development time, larval survival, adult weight, and incidences of deformities. Rearing larvae on artificial diet reduced development time from 1-2 yr to 2-3 mo. Larval development was fastest and survival rates highest under constant temperatures of 25 degrees C. Hatch rate and larval survival decreased if eggs were surface sterilized. Using FABCO antimicrobials could not prevent fungal contamination; use of methyl paraben and sorbic acid was successful in suppressing fungal and bacterial growth throughout larval development time to <10%. The moisture content of the diet did not significantly affect larval survival, development, or adult weight. Decreasing the proportion of purple loosestrife roots in the diet reduced adult weight and the proportion of larvae completing development, and increased development time; no larvae were able to complete development in root-free diet. With an increase in the number of larvae per cup, survival rates were reduced. The experiments revealed a female biased sex ratio: females consistently developed faster and were heavier than males. Incidence of adult deformities was consistently below 5%. Increased availability of adults for field release as a result of mass production using the semiartificial diet will accelerate the biocontrol program targeting purple loosestrife. We are able to produce several hundred weevils per week and have adapted the diet to rear other root-feeding weevils.  相似文献   

18.
Eight South American geographic populations of the thelytokous parasitoid Microctonus hyperodae Loan (Hymenoptera: Braconidae) were released in New Zealand in 1991 to assist in the suppression of the pasture pest Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). With one exception, parasitoids from each South American geographic population were released in equal numbers at each New Zealand release site. It was postulated that the South American geographic population(s) best suited to the conditions encountered at each New Zealand release locality would eventually become prevalent there. A morphometric analysis of adult parasitoids of known South American origins, reported previously, allowed M. hyperodae derived from west of the Andes (i.e. two collection sites in Chile) to be distinguished from parasitoids derived from east of the Andes (i.e. three collection sites in Argentina and one each in Brazil and Uruguay). Parasitoids derived from a fourth site in Argentina (S. C. de Bariloche) could not be clearly discriminated from either the 'east of the Andes' or 'west of the Andes' categories. A morphometric analysis of M. hyperodae adults collected from five of the New Zealand release sites from 1992-1994 is presented in this contribution. The analysis indicated that parasitoids derived from east of the Andes were significantly more prevalent than expected. The possible reasons for the initial success in New Zealand of one or more east of the Andes populations include the greater fecundity of M. hyperodae collected in Uruguay and the likelihood that M. hyperodae from east of the Andes co-evolved more recently with the stock from which New Zealand's L. bonariensis was founded.  相似文献   

19.
《Biological Control》2011,56(3):234-240
The safe practice of biological control relies, in part, on an accurate evaluation of a potential agent’s host-specificity via testing through a “filter of safety”. The results of laboratory tests may differ from those obtained in open field host-specificity tests, where agents are able to use their full range of host-selection behaviors. It was hypothesized that Rhinoncomimus latipes (Coleoptera: Curculionidae), the biological control agent released against mile-a-minute weed, Persicaria perfoliata (Polygonaceae), would not feed or oviposit on nontarget plants in a two-phase, open field setting. Ten weevils were placed at the base of each of 13 test plant species in a randomized complete block design with six replicates. Weevils placed at the base of mile-a-minute weed were marked with yellow fluorescent dust, and yellow weevils were subsequently found only on mile-a-minute. Weevils placed at the base of nontarget plants (marked with red fluorescent dust) rapidly colonized mile-a-minute weed. Three hours after release, the number of R. latipes found on mile-a-minute weed was significantly higher than predicted by a random distribution of weevils on all test plants. The likelihood of finding more weevils on mile-a-minute compared to nontarget plant species was 31.0% at 3 h and increased to 96.5% at 44 h after release. Whereas prerelease studies showed feeding at low levels on 9 of the 13 plant species tested here, under open field conditions R. latipes did not feed on any nontarget plant species and dispersed from these plants. In an open field setting, where the weevil was able to use its full range of host-selection behaviors, there was no observed risk of nontarget effects for any species tested.  相似文献   

20.
The considerable variation in adult size of the boll weevil, Anthonomus grandis grandis Boheman, has been well documented, but the influences of adult size on reproductive rate are not known. We examined the relationship between the size of boll weevils and their feeding and oviposition. Weevils weighed to the nearest milligram were grouped into five categories based on pupal weight: < or =5, 6-10, 11-15, 16-20, and >20 mg. Numbers of lifetime punctures produced in flower buds (squares) of cotton, Gossypium hirsutum L., by both sexes of adults tended to increase with pupal weight. Boll weevil females with pupal weights >10 mg produced progeny with significantly higher survival to adulthood and also produced a higher percentage of female progeny than those with pupal weights < or =10 mg. The population growth indices for females having pupal weights >10 mg averaged 1.8-fold higher than those of females weighing < or =10 mg. Survivorship of adults of both sexes also tended to increase with pupal weight. The percentage of females laying eggs on any given day averaged 2.1 times higher when their pupal weights were >10 mg than when their pupal weights were < or =10 mg. Although small size negatively affected female reproductive potential, even extremely small females produced some viable offspring. However, the penalties of small adult size, in terms of longevity and reproductive potential, suggest that cultural practices that result in the production of small adults may be used to impact weevil populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号