共查询到20条相似文献,搜索用时 15 毫秒
1.
E Martinez-Jaramillo R Garza-Morales MJ Loera-Arias O Saucedo-Cardenas R Montes-de-Oca-Luna LR McNally 《Biotechnic & histochemistry》2017,92(3):167-174
Fluorescent proteins are useful reporter molecules for a variety of biological systems. We present an alternative strategy for cloning reporter genes that are regulated by the nisin-controlled gene expression (NICE) system. Lactoccocus lactis was genetically engineered to express green fluorescent protein (GFP), mCherry or near-infrared fluorescent protein (iRFP). The reporter gene sequences were optimized to be expressed by L. lactis using inducible promoter pNis within the pNZ8048 vector. Expression of constructions that carry mCherry or GFP was observed by fluorescence microscopy 2 h after induction with nisin. Expression of iRFP was evaluated at 700 nm using an infrared scanner; cultures induced for 6 h showed greater iRFP expression than non-induced cultures or those expressing GFP. We demonstrated that L. lactis can express efficiently GFP, mCherry and iRFP fluorescent proteins using an inducible expression system. These strains will be useful for live cell imaging studies in vitro or for imaging studies in vivo in the case of iRFP. 相似文献
2.
3.
Background
The nisin-controlled gene expression system NICE of Lactococcus lactis is one of the most widely used expression systems in Gram-positive bacteria. Despite its widespread use, no optimization of the culture conditions and nisin induction has been carried out to obtain maximum yields. As a model system induced production of lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus) produced by S. simulans biovar. Staphylolyticus, was used. Three main areas need optimization for maximum yields: cell density, nisin-controlled induction and protein production, and parameters specific for the target-protein. 相似文献4.
Large increase in brazzein expression achieved by changing the plasmid /strain combination of the NICE system in Lactococcus lactis 总被引:1,自引:0,他引:1
Aims: To evaluate brazzein production in Lactococcus lactis using the nisin-controlled expression (NICE) system. The approach is through analysis of different plasmid/strain combinations.
Methods and Results: Two plasmid/strain combinations of the NICE system were used in brazzein expression: L. lactis NZ9000 harbouring plasmid pNZ8148, and L. lactis IL1403 harbouring plasmid pMSP3545. The former combination proved superior, with a >800-fold increase in His-tagged brazzein expression (to 1·65 mg l−1 of fermentation broth), comparable to expression levels in Escherichia coli . Improved expression resulted in a minor increase in secretion to the medium with the use of the Usp45 signal peptide. The yield of wild-type brazzein corresponded to that of His-tagged brazzein. Wild-type brazzein was partially soluble and low-intensity sweetness was detected.
Conclusions: The plasmid/strain combination of the NICE system has a significant impact on the expression of brazzein where a >800-fold increase was achieved. The greatly increased expression of brazzein resulted in minor improvement in secretion and low-intensity sweetness.
Significance and Impact of the Study: The choice of the plasmid/strain combination of the NICE system was shown to be of extreme importance in brazzein expression. 相似文献
Methods and Results: Two plasmid/strain combinations of the NICE system were used in brazzein expression: L. lactis NZ9000 harbouring plasmid pNZ8148, and L. lactis IL1403 harbouring plasmid pMSP3545. The former combination proved superior, with a >800-fold increase in His-tagged brazzein expression (to 1·65 mg l
Conclusions: The plasmid/strain combination of the NICE system has a significant impact on the expression of brazzein where a >800-fold increase was achieved. The greatly increased expression of brazzein resulted in minor improvement in secretion and low-intensity sweetness.
Significance and Impact of the Study: The choice of the plasmid/strain combination of the NICE system was shown to be of extreme importance in brazzein expression. 相似文献
5.
Heterologous production of bovine plasmin was studied in the industrially relevant bacterium Lactococcus lactis. Two sets of lactococcal gene expression signals were coupled to the region of the plasmin gene coding for the serine protease
domain. When the promoter region of the prtP gene was used, plasmin was detected mainly intracellularly in strain BPL25 by Western blot hybridization. The intracellular
presence of plasmin led to physiological stress. Expression of the plasmin gene driven by the promoter and complete signal
sequence of the lactococcal usp45 gene resulted in efficient plasmin secretion in strain BPL420. Cell lysis was observed in strains producing plasmin fragments
including the catalytic domain, but not in control strains, which only produced a non-catalytic region of plasmin. The plasmin
produced was shown to be biologically active.
Received: 2 December 1996 / Received revision: 17 March 1997 / Accepted: 27 April 1997 相似文献
6.
Lysozyme expression in Lactococcus lactis 总被引:1,自引:0,他引:1
Maarten van de Guchte Fimme Jan van der Wal Jan Kok Gerard Venema 《Applied microbiology and biotechnology》1992,37(2):216-224
Summary Three lysozyme-encoding genes, one of eukaryotic and two of prokaryotic origin, were expressed in Lactococcus lactis subsp. lactis. Hen egg white lysozyme (HEL) could be detected in L. lactis lysates by Western blotting. No lysozyme activity was observed, however, presumably because of the absence of correctly formed disulphide bonds in the L. lactis product. The functionally related lysozymes of the E. coli bacteriophages T4 and were produced as biologically active proteins in L. lactis. In both cases, the highest expression levels were obtained using configurations in which the bacteriophage lysozyme genes had been translationally coupled to a short open reading frame of lactococcal origin. Both enzymes, like HEL, may prevent the growth of food-spoilage bacteria. 相似文献
7.
Abstract Lactic acid bacteria are of major economic importance, as they occupy a key position in the manufacture of fermented foods. A considerable body of research is currently being devoted to the development of lactic acid bacterial strains with improved characteristics, that may be used to make fermentations pass of more efficiently, or to make new applications possible. Therefore, and because the lactococci are designated 'GRAS' organisms ('generally recognized as safe') which may be used for safe production of foreign proteins, detailed knowledge of homologous and heterologous gene expression in these organisms is desired. An overview is given of our current knowledge concerning gene expression in Lactococcus lactis . A general picture of gene expression signals in L. lactis emerges that shows considerable similarity to those observed in Escherichia coli and Bacillus subtilis . This feature allowed the expression of a number of L. lactis -derived genes in the latter bacterial species. Several studies have indicated, however, that in spite of the similarities, the expression signals from E. coli, B. subtilis and L. lactis are not equally efficient in these three organisms. 相似文献
8.
Two plasmids, pPAH and pAH, containing a staphylokinase variant gene (sakXH) under the control of two tandem promoters (P32-PlacA) or promoter PlacA alone were constructed and introduced into Lactococcus lactis MG5267. The expression of sakXH in the strain MG5267(pPAH) was approximately twice as high as that in the strain MG5267(pAH), according to the formation of fibrinolytic halos on fibrinolytic plates detected at the same conditions, indicating that the two tandem promoters were stronger than one alone. Difference between the expressions of sakXH under the inducible and non-inducible conditions suggested that PlacA retained its feature as an inducible promoter when fused to promoter P32. 相似文献
9.
C Platteeuw I van Alen-Boerrigter S van Schalkwijk W M de Vos 《Applied microbiology》1996,62(3):1008-1013
10.
11.
Lactic acid bacteria are of major economic importance, as they occupy a key position in the manufacture of fermented foods. A considerable body of research is currently being devoted to the development of lactic acid bacterial strains with improved characteristics, that may be used to make fermentations pass of more efficiently, or to make new applications possible. Therefore, and because the lactococci are designated 'GRAS' organisms ('generally recognized as safe') which may be used for safe production of foreign proteins, detailed knowledge of homologous and heterologous gene expression in these organisms is desired. An overview is given of our current knowledge concerning gene expression in Lactococcus lactis. A general picture of gene expression signals in L. lactis emerges that shows considerable similarity to those observed in Escherichia coli and Bacillus subtilis. This feature allowed the expression of a number of L. lactis-derived genes in the latter bacterial species. Several studies have indicated, however, that in spite of the similarities, the expression signals from E. coli, B. subtilis and L. lactis are not equally efficient in these three organisms. 相似文献
12.
13.
The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease in expression of clpP encoding the proteolytic component of the Clp protease complex, this decrease was delayed in the absence of ClpE. Site-directed mutagenesis of the zinc-binding motif conserved in ClpE ATPases interfered with the ability to repress CtsR-dependent expression. Quantification of ClpE by Western blot analysis revealed that at a high temperature ClpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders ClpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the CtsR homologue in Bacillus subtilis. Thus, our data point to a regulatory role of ClpE in turning off clpP gene expression following temporal heat shock induction, and we propose that this effect is mediated through CtsR. 相似文献
14.
Transposition of IS10R in Lactococcus lactis 总被引:1,自引:0,他引:1
Aims: To characterize the transposition mechanism of the IS-element IS 10 R and study how this element is involved in gene disruption in Lactococcus lactis .
Methods and Results: The gene flciA confers immunity against lactococcin A in lactococci. However, the immunity function was lost when flciA was co-expressed with the regulator gene nisR on a plasmid in L. lactis NZ9000. By PCR and DNA sequencing, it was revealed that flciA in immune-negative transformants was disrupted by the IS-element IS 10 R. Such gene disruption did not occur when flciA was expressed alone nor when the plasmid-located nisR was mutated, suggesting that nisR is directly involved in the transposition. The sequence 5'-CACTTAACC-3', which was found in flciA and at both ends of the inserted IS 10 R, was identified as target site by site-directed mutagenesis.
Conclusions: IS 10 R transposes in L. lactis NZ9000 in a nisR -dependent fashion and employs the sequence 5'-CACTTAACC-3' as integration site.
Significance and Impact of the Study: To our knowledge, this is the first time IS 10 R and aspects of its transposition are described in the industrial important bacterium L. lactis . The highly controllable insertion of IS 10 R into a target site might present a great potential as a gene disruption system. 相似文献
Methods and Results: The gene flciA confers immunity against lactococcin A in lactococci. However, the immunity function was lost when flciA was co-expressed with the regulator gene nisR on a plasmid in L. lactis NZ9000. By PCR and DNA sequencing, it was revealed that flciA in immune-negative transformants was disrupted by the IS-element IS 10 R. Such gene disruption did not occur when flciA was expressed alone nor when the plasmid-located nisR was mutated, suggesting that nisR is directly involved in the transposition. The sequence 5'-CACTTAACC-3', which was found in flciA and at both ends of the inserted IS 10 R, was identified as target site by site-directed mutagenesis.
Conclusions: IS 10 R transposes in L. lactis NZ9000 in a nisR -dependent fashion and employs the sequence 5'-CACTTAACC-3' as integration site.
Significance and Impact of the Study: To our knowledge, this is the first time IS 10 R and aspects of its transposition are described in the industrial important bacterium L. lactis . The highly controllable insertion of IS 10 R into a target site might present a great potential as a gene disruption system. 相似文献
15.
Here we developed the new expression system P(Zn) zitR, based on the regulatory signals (P(Zn) promoter and zitR repressor) of the Lactococcus lactis zit operon, involved in Zn(2+) high-affinity uptake and regulation. A P(Zn) zitR-controlled expression vector was constructed, and expression regulation was studied with two reporter genes, uspnuc and lacLM; these genes encode, respectively, a protein derived from Staphylococcus aureus secreted nuclease and Leuconostoc mesenteroides cytoplasmic beta-galactosidase. Nuclease and beta-galactosidase activities of L. lactis MG1363 cells expressing either uspnuc or lacLM under the control of P(Zn) zitR were evaluated on plates and quantified from liquid cultures as a function of divalent metal ion, particularly Zn(2+), availability in the environment. Our results demonstrate that P(Zn) zitR is highly inducible upon divalent cation starvation, obtained either through EDTA addition or during growth in chemically defined medium, and is strongly repressed in the presence of excess Zn(2+). The efficiency of the P(Zn) zitR expression system was compared to that of the well-known nisin-controlled expression (NICE) system with the same reporter genes cloned under either P(Zn) zitR or P(nisA) nisRK control. lacLM induction levels reached with both systems were on the same order of magnitude, even though the NICE system is fivefold more efficient than the P(Zn) zitR system. An even smaller difference or no difference was observed after 3 h of induction when nuclease was used as a reporter for Western blotting detection. P(Zn) zitR proved to be a powerful expression system for L. lactis, as it is tightly controlled by the zinc concentration in the medium. 相似文献
16.
Glenting J Madsen SM Vrang A Fomsgaard A Israelsen H 《Applied and environmental microbiology》2002,68(10):5051-5056
We report the development of a nonantibiotic and nonpathogenic host-plasmid selection system based on lactococcal genes and threonine complementation. We constructed an auxotrophic Lactococcus lactis MG1363Deltathr strain which carries deletions in two genes encoding threonine biosynthetic enzymes. To achieve plasmid-borne complementation, we then constructed the minimal cloning vector, pJAG5, based on the genes encoding homoserine dehydrogenase-homoserine kinase (the hom-thrB operon) as a selective marker. Using strain MG1363Deltathr, selection and maintenance of cells carrying pJAG5 were obtained in threonine-free defined media. Compared to the commonly used selection system based on erythromycin resistance, the designed complementation system offers a competitive and stable plasmid selection system for the production of heterologous proteins in L. lactis. The potential of pJAG5 to deliver genes for expression in eukaryotes was evaluated by insertion of a mammalian expression unit encoding a modified green fluorescent protein. The successful delivery and expression of genes in human kidney fibroblasts indicated the potential of the designed nonantibiotic host-plasmid system for use in genetic immunization. 相似文献
17.
Cloning of the citrate permease gene of Lactococcus lactis subsp. lactis biovar diacetylactis and expression in Escherichia coli 总被引:1,自引:0,他引:1
F Sesma D Gardiol A P de Ruiz Holgado D de Mendoza 《Applied and environmental microbiology》1990,56(7):2099-2103
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 相似文献
18.
Lactic acid bacteria are widely used in industrial fermentation. The potential use of these bacteria as homologous and heterologous protein expression hosts has been investigated extensively. The NIsin-Controlled gene Expression system (the NICE system) is an efficient and promising gene expression system based on the autoregulation mechanism of nisin biosynthesis in the Lactococcus lactis. In the NICE system, the membrane-located histidine kinase NisK senses the inducing signal nisin and autophosphorylates, then transfers phosphorous group to intracellular response regulator protein NisR which activates nisA promoter to express the downstream gene(s). The NICE system allows regulated overproduction of a variety of interest proteins by several Gram-positive bacteria, especially L. lactis. The essential elements for system construction, its application for expression of some biotechnologically important proteins and further improvements of this system are discussed. 相似文献
19.
Wang H O'Sullivan DJ Baldwin KA McKay LL 《Applied and environmental microbiology》2000,66(3):1223-1227
A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains. 相似文献
20.
Functional expression in Saccharomyces cerevisiae of the Lactococcus lactis mleS gene encoding the malolactic enzyme 总被引:4,自引:0,他引:4
Abstract Malolactic fermentation, a crucial step in winemaking, results mostly in degradation by lactic acid bacteria of L-malic acid into L-lactic acid. This direct decarboxylation is catalysed by the malolactic enzyme. Recently we, and others, have cloned the mleS gene of Lactococcus lactis encoding malolactic enzyme. Heterologous expression of mleS in Saccha-romyces cerevisiae was tested to perform simultaneously alcoholic and malolactic fermentations by yeast. mleS gene was cloned in a yeast multicopy vector under a strong promoter. Malolactic activity was present in crude extracts of recombinant yeasts. Malic acid degradation was tested during alcoholic fermentation in synthetic media and must. Yeasts expressing the mleS gene actually produced L-lactate from L-malate; nevertheless malate degradation was far from complete. 相似文献