共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Mucopolysaccharidosis type IIIB (MPS-IIIB, Sanfilippo type B Syndrome) is a heterosomal, recessive lysosomal storage disorder resulting from a deficiency of [alpha]-N-acetylglucosaminidase (NAGLU). To characterize this enzyme further and evaluate its potential for enzyme replacement studies we expressed the NAGLU-encoding cDNA in Chinese hamster ovary cells (CHO-K1 cells) and purified the recombinant enzyme from the medium of stably transfected cells by a two-step affinity chromatography. Two isoforms of recombinant NAGLU with apparent molecular weights of 89 and 79 kDa were purified and shown to differ in their glycosylation pattern. The catalytic parameters of both forms of the recombinant enzyme were indistinguishable from each other and similar to those of NAGLU purified from various tissues. However, compared to other recombinant lysosomal enzymes expressed from CHO-K1 cells, the mannose-6-phosphate receptor mediated uptake of the secreted form of recombinant NAGLU into cultured skin fibroblasts was considerably reduced. A small amount of phosphorylated NAGLU present in purified enzyme preparations was shown to be endocytosed by MPS-IIIB fibroblasts via the mannose-6-phosphate receptor-mediated pathway and transported to the lysosomes, where they corrected the storage phenotype. Direct metabolic labeling experiments with Na(2) (32)PO(4) confirmed that the specific phosphorylation of recombinant NAGLU secreted from transfected CHO cells is significantly lower when compared with a control lysosomal enzyme. These results suggest that the use of secreted NAGLU in future enzyme and gene replacement therapy protocols will be severely limited due to its small degree of mannose-6-phosphorylation. 相似文献
6.
7.
8.
Crystallization and preliminary x-ray diffraction studies of recombinant human interleukin-1 beta 总被引:3,自引:0,他引:3
Recombinant human interleukin-1 beta has been crystallized into a tetragonal cell. The unit cell constants are a = b = 54.9 A, c = 76.8 A, and alpha = beta = gamma = 90 degrees. The crystals diffract to better than 1.9 A and are suitable for high resolution data collection. The crystallization conditions and general crystal data are presented. 相似文献
9.
Human kallikrein 14 (KLK14) is a member of the human kallikrein gene family of serine proteases, and its protein, hK14, has recently been suggested to serve as a new ovarian and breast cancer marker. To gain insights into hK14's physiological functions, the active recombinant enzyme was obtained in an enzymatically pure state for biochemical and enzymatic characterizations. We studied its substrate specificity and behavior to various protease inhibitors, and identified candidate physiological substrates. hK14 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type I, collagen type IV, fibrinogen, and high-molecular-weight kininogen. Furthermore, it rapidly hydrolyzed insulin-like growth factor binding protein-3 (IGFBP-3). These findings suggest that hK14 may be implicated in tumor progression in ovarian carcinoma. 相似文献
10.
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) which possesses rRNA N-glycosidase activity. TCS has various pharmacological properties. It is possible to reduce the antigenicity of TCS by deleting up to seven C-terminal residues of TCS (TCS-C7) with minimal effect on its activity. TCS-C7 has been crystallized and the crystal diffracted to 1.8 A. It belongs to space group P2(1), with unit-cell parameters a=71.6A, b=74.4A, c=87.6A, beta=97.0 degrees. It is given that there are four molecules per asymmetric unit. 相似文献
11.
The doppel protein (Dpl) is a newly recognized prion protein (PrP)-like molecule encoded by a novel gene locus, prnd, located on the same chromosome as the PrP gene. To study the structural features of Dpl, we have expressed recombinant human Dpl corresponding to the putative mature protein domain (residues 24-152) in Escherichia coli. The primary structure of the recombinant Dpl 24-152 was characterized using gel electrophoresis, N-terminal Edman sequencing, matrix-assisted laser desorption ionization mass spectrometry, and electrospray ionization mass spectrometry. Dpl 24-152 was shown to contain two disulfide bonds (Cys94-Cys145 and Cys108-Cys140). The secondary structure of Dpl was analyzed using far-UV circular dichroism spectroscopy. Dpl 24-152 was found to be an alpha-helical protein having a high helical content (40%). Dpl 24-152 exhibited characteristics of a thermodynamically stable protein that undergoes reversible and cooperative thermal denaturation. In addition, Dpl was found to be soluble and sensitive to proteinase K digestion. Therefore, Dpl 24-152 possesses biochemical properties similar to those of recombinant PrP. This study provides knowledge about the molecular features of human Dpl that will be useful in further investigation into its normal function and the role it may play in neurodegenerative diseases. 相似文献
12.
Tabtoxin resistance protein (TTR) is an enzyme that catalyzes the acetylation of tabtoxin rendering tabtoxin-producing pathogens tolerant to their own phytotoxins. According to the structure based detoxification mechanism of TTR, three site-directed mutants Y141F, D130N and Y141F-D130N were constructed and overexpressed in E. coli. The products were then purified and their properties were analyzed by CD and DLS. Crystallization trials of two mutants Y141F andY141F-D130N were preformed. 相似文献
13.
Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various natural or designed ligands with these receptors. Using this site-specific labeling strategy, other functional probes, such as fluorescent dyes, biotin, or nanoparticles could also be introduced to the A-chain N-terminal of the recombinant human relaxin-3. Additionally, we improved the time-resolved fluorescence assay for the DOTA-bound europium ion which paves the way for the use of DOTA as a lanthanide chelator for protein and peptide labeling in future studies. 相似文献
14.
Mochizuki S Hamato N Hirose M Miyano K Ohtani W Kameyama S Kuwae S Tokuyama T Ohi H 《Protein expression and purification》2001,23(1):55-65
Antithrombin III (ATIII) is a member of the serpin superfamily and a major regulator of the blood coagulation cascade. To express recombinant human ATIII (rATIII) in the methylotrophic yeast Pichia pastoris, we constructed an rATIII expression plasmid which contained the ATIII cDNA encoding mature protein region connected with the truncated mAOX2 promoter and the SUC2 secretion signal, introduced it into the P. pastoris genome, and screened for a single copy transformant. The secretion of rATIII from the transformant reached a level of 320 IU/L in the culture broth at 169 h. From the culture-supernatant, rATIII was purified to over 99% by heparin-affinity chromatography and other column chromatography methods. We characterized rATIII and compared it with human plasma-derived ATIII (pATIII). The purified rATIII possessed correct N-terminal amino acid sequence, and its molecular weight by SDS-PAGE of 56,000 Da was slightly different from the 58,000 Da of pATIII. Sequence and mass spectrometry analysis of BrCN fragments revealed that posttranslational modifications had occurred in rATIII. O-linked mannosylation was found at Ser 3 and Thr 9, and in some rATIII molecules, modification with O-linked mannosyl-mannose had probably occurred at Thr 386, close to the reactive center. Although the heparin-binding affinity of rATIII was 10-fold higher than that of pATIII, its inhibitory activity against thrombin was only half. As the conformation of rATIII and pATIII by circular dichroism spectroscopy was similar, O-glycosylation in the reactive center loop was assumed to be mainly responsible for the decreased inhibitory activity. pATIII can inactivate thrombin through formation of a stable thrombin-ATIII complex, but rATIII modified with O-glycosylation in the reactive center loop may act as a substrate rather than an inhibitor of thrombin. 相似文献
15.
Barbara Manconi Tiziana Cabras Alberto Vitali Chiara Fanali Antonella Fiorita Rosanna Inzitari Massimo Castagnola Irene Messana Maria Teresa Sanna 《Protein expression and purification》2010,69(2):219-225
This work reports the successful recombinant expression of human statherin in Escherichia coli, its purification and in vitro phosphorylation. Human statherin is a 43-residue peptide, secreted by parotid and submandibular glands and phosphorylated on serine 2 and 3. The codon-optimized statherin gene was synthesized and cloned into commercial pTYB11 plasmid to allow expression of statherin as a fusion protein with intein containing a chitin-binding domain. The plasmid was transformed into E. coli strains and cultured in Luria–Bertani medium, which gave productivity of soluble statherin fusion protein of up to 47 mg per liter of cell culture, while 112 mg of fusion protein were in the form of inclusion bodies. No significant refolded target protein was obtained from inclusion bodies. The amount of r-h-statherin purified by RP–HPLC corresponded to 0.6 mg per liter of cell culture. Attenuated total reflection-Fourier transform infrared spectroscopy experiments performed on human statherin isolated from saliva and r-h-statherin assessed the correct folding of the recombinant peptide. Recombinant statherin was transformed into the diphosphorylated biologically active form by in vitro phosphorylation using the Golgi-enriched fraction of pig parotid gland containing the Golgi-casein kinase. 相似文献
16.
Wenyan Zou Xiaoyu Liu Dianhua Chen Jie Wang Xi Zhao Jiahuang Li 《Preparative biochemistry & biotechnology》2016,46(8):833-837
Based on their nanocage architectures, ferritins show their potential applications in medical imaging and therapeutic delivery systems. However, the recombinant human H-chain ferritin (rHF) is prone to form inclusion bodies in Escherichia coli. In our study, the cDNA of rHF was cloned into plasmid pET28a under the control of a T7 promoter. Molecular chaperones, including GroES, GroEL, and trigger factor, were coexpressed with rHF to facilitate its correct folding. The results showed that the solubility of rHF was increased more than threefold with the help of molecular chaperones. Taking advantages of its N-terminal His-tag, rHF was then purified with Ni-affinity chromatography. With a yield of 15?mg/L from bacterial culture, the purified rHF was analyzed by circular dichroism spectrometry for its secondary structure. Moreover, the rHF nanocages were characterized by transmission electron microscopy and dynamic light scattering. Our results indicate that rHF is able to self-assemble into nanocages with a narrow size distribution. 相似文献
17.
Krawczenko A Ciszak L Malicka-Blaszkiewicz M 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2005,140(1):141-151
Deoxyribonuclease I (DNase I)-like enzyme from the liver of the carp (Cyprinus carpio) was purified to homogeneity and further characterized. Ion exchange chromatography on DEAE-cellulose, molecular filtration on Sephacryl S-300 and Con A-Sepharose affinity chromatography were applied for enzyme isolation. Carp liver DNase, similarly to DNase I from bovine pancreas, was found to be an endonuclease that hydrolyses linear DNA from salmon sperm as well as circular DNA forms--plasmid and cosmid. The purified enzyme is a glycoprotein and shows microheterogeneity, as observed in DNase zymograms prepared after native and two-dimensional electrophoresis (2D-PAGE). The composition of sugar component of the enzyme was characterized. Special attention was focused on the ability of carp liver DNase to interact with carp liver actin. The carp liver enzyme was inhibited by endogenous actin. The estimated binding constant of carp liver DNase to carp liver actin was calculated to be 1.1 x 10(6) M(-1). 相似文献
18.
Yuan J Beltman J Gjerstad E Nguyen MT Sampang J Chan H Janc JW Clark JM 《Protein expression and purification》2006,49(1):47-54
Tryptases are trypsin-like serine proteases whose expression is restricted to cells of hematopoietic origin, notably mast cells. gamma-Tryptase, a recently described member of the family also known as transmembrane tryptase (TMT), is a membrane-bound serine protease found in the secretory granules or on the surface of degranulated mast cells. The 321 amino acid protein contains an 18 amino acid propeptide linked to the catalytic domain (cd), followed by a single-span transmembrane domain. gamma-Tryptase is distinguished from other human mast cell tryptases by the presence of two unique cysteine residues, Cys(26) and Cys(145), that are predicted to form an intra-molecular disulfide bond linking the propeptide to the catalytic domain to form the mature, membrane-anchored two-chain enzyme. We expressed gamma-tryptase as either a soluble, single-chain enzyme with a C-terminal His tag (cd gamma-tryptase) or as a soluble pseudozymogen activated by enterokinase cleavage to form a two-chain protein with an N-terminal His tag (tc gamma-tryptase). Both recombinant proteins were expressed at high levels in Pichia pastoris and purified by affinity chromatography. The two forms of gamma-tryptase exhibit comparable kinetic parameters, indicating the propeptide does not contribute significantly to the substrate affinity or activity of the protease. Substrate and inhibitor library screening indicate that gamma-tryptase possesses a substrate preference and inhibitor profile distinct from that of beta-tryptase. Although the role of gamma-tryptase in mast cell function is unknown, our results suggest that it is likely to be distinct from that of beta-tryptase. 相似文献
19.
20.
Langnaese K Kloos DU Wehnert M Seidel B Wieacker P 《Cytogenetics and cell genetics》2001,94(3-4):233-240
In a search for genes involved in X-linked mental retardation we have analyzed the expression pattern and genomic structure of human MAGED2. This gene is a member of a new defined MAGE-D cluster in Xp11.2, a hot spot for X-linked mental retardation. Rat and mouse orthologues have been isolated. In contrast to the genes of the MAGE-A, MAGE- B and MAGE-C clusters, MAGED2 is expressed ubiquitously. High expression was detected in specific brain regions and in the interstitium of testes. Five SNPs in the coding region of human MAGED2 were characterized and their allele frequencies determined in a German and Turkish population. 相似文献