首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
H-Phe-Ile-Tyr-His-Ser-Tyr-Lys-OH after intracerebroventricular (icv.) administration inhibited the extinction of active avoidance behaviour for a short period. The dopamine receptor blocker haloperidol completely blocked this effect of the heptapeptide, while the muscarinic anticholinergic agent atropine only partly inhibited it. The alpha 1-receptor blocker phenoxybenzamine and the beta-receptor blocker propranolol did not significantly influence the extinction inhibition induced by the peptide. These results suggest that the dopaminergic and, in part the cholinergic system, play important roles in this behavioural action of H-Phe-Ile-Tyr-Ser-Tyr-Lys-OH.  相似文献   

2.
The action of cyclic and linear somatostatin on active avoidance and open-field behaviour was investigated in rats. Both peptides inhibited the extinction of the avoidance behaviour and slightly but not significantly increased the intertrial activity (ITR). Both peptides increased ambulation and rearing activity in a dose related fashion, while the grooming and defecation rates were not changed. Since both peptides are capable of increasing the locomotor performance this action might contribute to the effect exerted on the extinction of active avoidance behaviour.  相似文献   

3.
The dual regulation of cyclic AMP accumulation was studied in rat prostatic epithelial cells incubated with somatostatin, vasoactive intestinal peptide (VIP), and the beta-adrenergic agent isoproterenol. Somatostatin noncompetitively inhibited the stimulatory effect of VIP and isoproterenol, but it did not alter basal cyclic AMP levels. In addition to the multifactorial regulation of the cyclic AMP system in rat prostatic epithelium, these results suggest that somatostatin may play a physiological role at this level.  相似文献   

4.
The increase in locomotor activity induced by cocaine (15 mg/kg, i.p.) in the mouse was antagonized by pretreatment with compounds which inhibited monoanimergic receptors such as phenoxybenzamine, chlorpromazine or methysergide. On the contrary, the lethal dose of cocaine in rats and mice was not reduced by these substances. These data suggest that monoamines are involved in mediating the motor activity of cocaine but not implicated in the toxic effect of the drug.  相似文献   

5.
Although neurohypophysial peptides are present in many regions of the developing and adult bullfrog (Rana catesbeiana) brain, the function of these peptides remains unclear. To investigate possible behavioral actions, we examined locomotor activity following peptide injection in bullfrogs at various developmental stages. An intraperitoneal (ip) injection of arginine vasotocin (AVT) in tadpoles (stages V, X, or XVII) produced an immediate and dose-dependent inhibition of locomotor activity. On the other hand, AVT stimulated activity when administered ip to juvenile or adult female bullfrogs, but did not influence activity in juvenile or adult males. The minimum effective dose of AVT, when injected directly into the brain of tadpoles, was 100-fold less than that observed when injected ip, suggesting a central nervous system site of action for this peptide. A vasopressin receptor antagonist (d(CH2)5[Tyr(Me)2]AVP administered ip or icv) significantly increased locomotor activity in tadpoles, compared to controls. Oxytocin, vasopressin, and AVP4-9 inhibited activity in tadpoles while mesotocin, des Gly(NH2)AVP, and pressinoic acid had no significant effect. Injection of PGF2 alpha also significantly decreased activity levels in tadpoles. However, pretreatment of tadpoles with indomethacin, a prostaglandin synthesis inhibitor, did not prevent the behavioral effects of AVT, suggesting that prostaglandin synthesis is not required for this response. In summary, AVT influenced locomotor activity in bullfrog tadpoles and female frogs. This effect shifted during development from an inhibitory action in tadpoles to a stimulatory effect in metamorphosed female frogs. The effect of AVT on juvenile and adult frog locomotion was sexually dimorphic, as this peptide altered female behavior but not male behavior.  相似文献   

6.
Obestatin is a 23-amino acid peptide derived from preproghrelin, purified from stomach extracts and detected in peripheral plasma. In contrast to ghrelin, obestatin has been reported to inhibit appetite and gastric motility. However, these effects have not been confirmed by some groups. Obestatin was originally proposed to be the ligand for GPR39, a receptor related to the ghrelin receptor subfamily, but this remains controversial. Obestatin and GPR39 are expressed in several tissues, including pancreas. We have investigated the effect of obestatin on islet cell secretion in the perfused rat pancreas. Obestatin, at 10 nM, inhibited glucose-induced insulin secretion, while at 1 nM, it potentiated the insulin response to glucose, arginine and tolbutamide. The potentiated effect of obestatin on glucose-induced insulin output was not observed in the presence of diazoxide, an agent that activates ATP-dependent K(+) channels, thus suggesting that these channels might be sensitive to this peptide. Obestatin failed to significantly modify the glucagon and somatostatin responses to arginine, indicating that its stimulation of insulin output is not mediated by an alpha- or delta-cell paracrine effect. Our results allow us to speculate about a role of obestatin in the control of beta-cell secretion. Furthermore, as an insulinotropic agent, its potential antidiabetic effect may be worthy of investigation.  相似文献   

7.
Somatostatin and octreotide share with vasoactive intestinal peptide the property of having an inhibitory effect on leukocyte functions. While there are studies reporting the inhibitory effect of the latter on respiratory burst in human monocytes, no such reports are available about similar inhibitory effects of the former. The aim of the present study was to investigate such effects of somatostatin and octreotide on human monocytes. Release of superoxide anion from monocytes was measured by superoxide dismutase-inhibitable reduction of cytochrome c in vitro. Somatostatin 1-14, somatostatin 1-28 and octreotide inhibited release of superoxide anion from stimulated monocytes. Formylpeptide-stimulated reduction of cytochrome c was inhibited by 1 mumol/l of octreotide and somatostatin 1-14 by about 50% and 35%, respectively. The effect was dose-dependent with half-maximal effective peptide concentrations at about 10 nmol/l. Somatostatin 1-28, which is the major form found in circulating plasma, also antagonized formylpeptide-stimulated respiratory burst activity; when directly compared to the effect of 1 mumol/l of somatostatin 1-14, somatostatin 1-28 was significantly more active (P less than 0.05). Our observations suggest that somatostatin-related peptides have a regulatory role in oxygen radical metabolism and a mediator role in the neuro-immune axis.  相似文献   

8.
Gluconeogenic activity in rat kidney cortex slices was stimulated by somatostatin. Somatostatin-stimulated gluconeogenesis was inhibited by phentolamine but not by propranolol suggesting that somatostatin action is mediated by α-adrenergic stimuli. The stimulatory effect by this hypothalamic peptide was not seen when renal cortex slices were depleted of calcium. However, the effect could be recovered by the addition of calcium. The results suggest that stimulatory effect of somatostatin in renal gluconeogenesis is via α-adrenergic stimuli and that an increase in calcium influx into the cytosol may be the causative factor for the enhanced gluconeogenesis.  相似文献   

9.
In the absence of somatostatin antagonists, somatostatin antisera administered acutely or animals chronically immunized against somatostatin have been used to define the functions of somatostatin. However, the circulating immunoglobulins from immunized animals may contain substantial quantities of endogenous hormones. This has not been examined for somatostatin. We have measured the amount of free somatostatin bound to circulating immunoglobulins in somatostatin-immunized animals and the effect of this sequestering of the free peptide on somatostatin secretion and gastric somatostatin synthesis and storage. The average concentration of somatostatin bound to the antisera was 6.9 nmol/l, about 1000-fold higher than normal circulating levels. Compared to control animals, there was a doubling of somatostatin mRNA in the fundus and a 4-fold increase in fundic somatostatin peptide. Similar increases were seen in pancreas, but the antrum was not significantly affected providing further evidence of distinct regulatory mechanisms between the antrum and fundus. We suggest that withdrawal of active somatostatin activates a regulatory loop to increase fundic somatostatin biosynthesis and storage. The data support the concept that somatostatin autoregulates its own expression at both the RNA and peptide level.  相似文献   

10.
Yang AM  Ji YK  Su SF  Yang SB  Lu SS  Mi ZY  Yang QZ  Chen Q 《Peptides》2011,32(9):1948-1952
Neuronostatin is a recently discovered endogenous bioactive peptide that is encoded by pro-mRNA of somatostatin. In the present study, we investigated the effect of neuronostatin on mood regulation in the forced swim test of mice. Our results showed intracerebroventricular (i.c.v.) administration of neuronostatin produced an increase in the immobility time, suggesting that neuronostatin induced depression-like effect. In order to rule out the possibility that neuronostatin had increased immobility time by a non-specific reduction in general activity, the effect of neuronostatin on locomotor activity was examined. Neuronostatin had no influence on locomotor activity in mice. In addition, the depression-like effect of neuronostatin was completely reversed by melanocortin 3/4 receptor antagonist SHU9119 or GABAA receptor antagonist bicuculline, but not by opioid receptor antagonist naloxone. These data suggested that the depression-like effect induced by i.c.v. administered neuronostatin was dependent upon the central melanocortin system and GABAA receptor. In conclusion, the results of this study report that neuronostatin induces depression-like effect. These findings reveal that neuronostatin is a new neuropeptide with an important role in regulating depressive behavior.  相似文献   

11.
The effect of thyrotropin releasing hormone (TRH) microinjections into the central amygdala (10 g in 0.5 1 into each side) on locomotor activity water intake and dominance behavior in a water competition test was investigated in male Wistar rats. TRH increased the general motility without altering the number of rearings. Intra-amygdaloid TRH injection to submissive rats resulted in a loss of subordinate position in these animals in the water competition test. A tendency to decrease dominance followed the injection of the peptide to the dominant animals. The effect of TRH in the dominance test does not appear to involve influence on the thirst drive as microinjection of the peptide did not change significantly the water consumption in thirsty rats.  相似文献   

12.
When isolated rat liver cells were incubated in the presence of vasoactive intestinal peptide at the concentrations ranging from 0.2 microgram to 2 micrograms per ml, glycogenolysis was maximally stimulated within 15 min. However, somatostatin inhibited the liver glycogenolysis. The combined addition to the incubation medium showed that insulin and somatostatin inhibited the stimulated glycogenolysis induced by vasoactive intestinal peptide, while vasoactive intestinal peptide plus secretin showed no additive effect on glycogenolysis, as compared with single the addition of vasoactive intestinal peptide. On the other hand, the additon of glucagon to vasoactive intestinal peptide showed additive effects on glycogenolysis. These results suggest that the receptor site for vasoactive intestinal peptide may be distinguishable from that for glucagon. Extracellular calcium ions were demonstrated to play an important role in the modulation of vasoactive intestinal peptide-induced glycogenolysis. The evidence presented in this paper indicates that glucose metabolism may be partly regulated by the direct action of vasoactive intestinal peptide on hepatocytes, which is referred to as an enterohepatic axis and that the axis is inhibited by insulin and somatostatin.  相似文献   

13.
Pancreastatin is a novel peptide, isolated from porcine pancreatic extracts, which has been shown to inhibit glucose-induced insulin release "in vitro". To achieve further insight into the influence of pancreastatin on pancreatic hormone secretion, we have studied the effects of this peptide on unstimulated insulin, glucagon and somatostatin output, as well as on the responses of these hormones to glucose and to tolbutamide in the perfused rat pancreas. Pancreastatin strongly inhibited unstimulated insulin release as well as the insulin responses to glucose and to tolbutamide. It did not significantly affect glucagon or somatostatin output under any of the above-mentioned conditions. These findings suggest that pancreastatin inhibits B-cell secretory activity directly, and not through an A-cell or D-cell paracrine effect.  相似文献   

14.
The alpha-adrenergic blocking agent phenoxybenzamine (PBA) was administered intravenously (10 mug kg-1 min-1) during a steady state water diuresis under pentothal anesthesia to six normal dogs, six dogs with chronic throacic inferior vena cava constriction and ascites (caval dogs) and seven dogs chronically salt depleted by sodium restriction and furosemide administration. In normal dogs urinary sodium excretion increased significantly from 265+/56 (SEM) to 370+/65 muequiv./min, whereas no increase in sodium excretion was noted in either caval dogs or salt depleted animals after PBA. In all three groups urine volume, fractional free water clearance and distalsodium load did not change significantly. In normal dogs, tubular sodium reabsorption decreased significantly from 73.4+/2.8% to 63.1+/4.0%, whereas no change was noted in caval or salt depleted dogs. Blood pressure and renal hemodynamics were not significantly altered by PBA administration in any group. These data demonstrate a natriuretic effect of alpha-adrenergic blockade in normal dogs with the major effect in the water clearing segment of the nephron. The absence of any effect in chronic caval or salt depleted dogs suggests that increased alpha-adrenergic activity does not play a significant role in the sodium retention of these animals.  相似文献   

15.
Derived from the same prohormone, obestatin has been reported to exert effects on food intake that oppose those of ghrelin. The obestatin receptor GPR39 is present in brain and pituitary gland. Since the gene encoding those two peptides is expressed also in those tissues, we examined further the possible actions of obestatin in vivo and in vitro. Intracerebroventricular administration of obestatin inhibited water drinking in ad libitum-fed and -watered rats, and in food-and water-deprived animals. The effects on water drinking preceded and were more pronounced than any effect on food intake, and did not appear to be the result of altered locomotor/behavioral activity. In addition, obestatin inhibited ANG II-induced water drinking in animals provided free access to water and food. Current-clamp recordings from cultured, subfornical organ neurons revealed significant effects of the peptide on membrane potential, suggesting this as a potential site of action. In pituitary cell cultures, log molar concentrations of obestatin ranging from 1.0 pM to 100 nM failed to alter basal growth hormone (GH) secretion. In addition, 100 nM obestatin failed to interfere with the stimulation of GH secretion by GH-releasing hormone or ghrelin and did not alter the inhibition by somatostatin in vitro. We conclude that obestatin does not act in pituitary gland to regulate GH secretion but may act in brain to alter thirst mechanisms. Importantly, in rats the effects of obestatin on food intake may be secondary to an action of the peptide to inhibit water drinking.  相似文献   

16.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

17.
Effects of somatostatin on absorption of D-glucose, L-leucine and triacylglycerols by the small intestine were studied in rats after treatment with the peptide in vivo and in everted jejunal segments in vitro.Absorption of glucose was not affected in vitro by somatostatin or the analogue [D-Trp8, D-Cys14]somatostatin at concentrations up to 0.006 mM. Addition of various peptidase inhibitors had no influence, suggesting that failure of somatostatins to inhibit absorption was not due to inactivation by peptidases. Glucose absorption in vitro by jejunum from rats treated with high doses of somatostatin in vivo was not different from that of untreated rats. The biguanide phenformin inhibited glucose absorption, whether added in vitro (IC50 ≈ 1 mM) of after treatment in vivo (3–100 mg/kg per os). The blood glucose increase following oral glucose administration in fasted rats was not affected by somatostatin, but significantly suppressed by phenformin.Absorption of leucine in vitro was not affected by somatostatin (up to 0.03 mM) or [D-Trp8, D-Cys14]somatostatin (0.01 mM), but inhibited by phenformin (IC50 = 2 mM).Absorption of acylglycerols (glycerol tri[1-14C]oleate) administered orally was significantly inhibited by somatostatin (twice 5 mg/kg subcutaneously) and phenformin (100 mg/kg per os).In rats — apparently in contrast to man — somatostatin does not decrease role of somatostatin in carbohydrate absorption remains controversial. Investigations in healthy [9] and diabetic [20] human subjects suggest that the peptide inhibits (directly or indirectly) the intestinal absorption of glucose in man. On the other hand, our results and those of others obtained in experiments in rats [4,11,21] and Rhesus monkeys [7] clearly do not support such a role in these species. Further studies are therefore needed to resolve this problem.  相似文献   

18.
Frog esophageal mucosa contains peptide glands which release pepsinogen in response to a variety of secretagogues and serves as a model to examine the inhibitory action of somatostatin. The pepsinogen secretion in response to bethanechol was inhibited by somatostatin in a noncompetitive fashion. The maximal response induced by bethanechol was reduced and the EC50 for bethanechol was increased in the presence of somatostatin. On the other hand, somatostatin showed essentially no effect on pepsinogen release evoked by ionophore A23187, dibutyryl cAMP or by forskolin in the presence of atropine. Atropine was included in the incubation mixture to eliminate the effect of acetylcholine released by forskolin from the intrinsic cholinergic neurons also present in the mucosa. Somatostatin did not exert any significant effect on the basal or the forskolin-stimulated cAMP accumulation in the mucosa, nor the basal or the forskolin-stimulated adenylate cyclase activity in the membranes of the peptic cells isolated from the mucosa. Thus, these results seem to suggest that somatostatin inhibits pepsinogen secretion from frog esophageal mucosa by a cAMP-independent pathway.  相似文献   

19.
The effects of the adrenergic blocking agents phenoxybenzamine, phentolamine, indoramin and propranol on adrenalin-stimulated glucose uptake, lipolysis and cyclic AMP formation have been studied in rat-isolated fat cells. The β-adrenergic blocking agent propranolol was found to inhibit adrenaline-stimulated lipolysis and cyclic AMP formation at concentrations which did not inhibit adrenalin-stimulated glucose uptake. Conversely, the α-adrenergic blocking agent phenoxybenzamine inhibited adrenalin-stimulated glucose uptake at concentrations which did not inhibit lipolysis and cyclic AMP formation. The α-adrenergic blocking agents phentolamine and indoramin did not show differential effects on adrenalin-stimulated lipolysis and glucose uptake. Phenoxybenzamine had no effect on glucose uptake stimulated by insulin, adrenocorticotropic hormone and dibutyryl cyclic AMP. It is suggested that a substantial proportion of adrenalin-stimulated glucose uptake in rat-isolated fat cells is mediated by a mechanism not involving cyclic AMP. The adrenalin receptor was apparently α in type although the lack of effects of phentolamine and indoramin were not typical of those described on other α-systems.  相似文献   

20.
P Vezina  J Stewart 《Life sciences》1985,36(11):1095-1105
Morphine action at opiate receptors in the ventral tegmental area (VTA) of the rat brain has been implicated in the production of increased locomotor activity and in morphine's rewarding properties. In the present experiments, bilateral administration of morphine (18 micrograms tapped into the tips of 28 gauge cannulae) into the VTA resulted in an increase in body temperature in rats. This effect was both reversed and blocked by a systemic injection of the opiate receptor blocker, naloxone, suggesting that it was due to morphine action at opiate receptors. The neuroleptic, pimozide, injected systemically four hours prior to morphine administration completely blocked the increased locomotor activity but had no effect on the hyperthermia. These data demonstrate that the hyperthermia was not brought about by the increased physical activity. Furthermore, these results suggest that while morphine-induced reward and increased locomotor activity may be mediated by an interaction of morphine and the ascending mesolimbic dopamine system, the hyperthermia is not. In an additional experiment, the effect of systemic injections of the central neurotransmitter receptor antagonists, scopolamine, phenoxybenzamine, and methergoline, on the hyperthermia induced by morphine in the VTA was investigated. Only the serotonin antagonist, methergoline, attenuated the hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号