首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Soluble sugars, proline, total chlorophyll contents and electrolyte leakage were measured in two wheat (Triticum aestivum L.) cultivars KRL 1-4 and HD 2009 at different growth stages [crown root initiation (CRI), flowering, and soft dough] under short term salinity (NaCl, CaCl2 and Na2SO4). In control plants sugar contents were maximum at flowering stage. Proline and sugar concentrations increased in both cultivars under salinity with a maximum increase at CRI. Electrolyte leakage increased and chlorophyll content decreased with the plant age. A sharp increase of electrolyte leakage was noticed at salinity of 10 and 15 dS m–1 in HD 2009 and KRL 1-4, respectively. The short-term salinity at CRI stage proved more detrimental as compared to salinity at flowering and soft dough stages in term of all biochemical changes induced. In wheat, plant resistance to salinity increased with the age of plant. The cultivar KRL 1-4 performed better under salinity as compared to HD 2009.  相似文献   

3.
Protective effect of exogenous wheat germ agglutinin (WGA) on wheat seedling (Triticum aestivum L.) during salinity stress was studied. In particular, we examined the state of pro- and antioxidant systems as well as the level of peroxide oxidation of lipids and electrolyte leakage under control conditions and when stressed with NaCl. Generation of superoxide anions and activity of both superoxide dismutase (SOD) and peroxidase increased during saline stress. Accumulation of O2 ·− resulted in peroxide oxidation of lipids and electrolyte leakage in response to stress. The injurious effect of salinity on root growth of seedlings was manifested by a decreased mitotic index (MI) in apical root meristem. This study show that WGA pretreatment decreased salt-induced superoxide anion generation, SOD and peroxidase activities, levels of lipid peroxidation and electrolytes leakage as well as correlating with a reduction in the inhibition of root apical meristem mitotic activity in salt-treated plants. This suggests that exogenous WGA reduced the detrimental effects of salinity-induced oxidative stress in wheat seedlings. Thus WGA effects on a balance of reactive oxygen species (ROS) and activities of antioxidant enzymes may provide an important contribution to a range of the defense reactions induced by this lectin in wheat plants.  相似文献   

4.
Seedlings of three wheat varieties (Triticum aestivum L.)—highly productive cv. Ballada, moderately productive cv. Belchanka, and low productive cv. Beltskaya—were exposed to progressive soil drought (cessation of watering for 3, 5, and 7 days) and then analyzed for chlorophyll content and activities of ferredoxin-NADP+ oxidoreductase (FNR) and antioxidant enzymes, namely, glutathione reductase (GR) and ascorbate peroxidase (AscP). In addition, the proline content, and the extent of lipid peroxidation were examined. In the first period of water limitation, the water loss from leaves was slight for all wheat cultivars, which is characteristic of drought-resistant varieties. After 7-day drought the leaf water content decreased by 5.2–6.8%. The total chlorophyll content expressed per unit dry weight increased insignificantly during the first two periods of drought but decreased by 13–15% later on. This decrease was not accompanied by changes in chlorophyll a/b ratio. The plant dehydration did not induce significant changes in FNR activity. Activities of GR and AscP in leaves of wheat cultivars Ballada and Belchanka increased on the 3rd and 5th days of drought. Owing to the coordinated increase in GR and AscP activities, the lipid peroxidation rate remained at nearly the control level observed in water-sufficient plants. When the dehydration period was prolonged to 7 days, activities of GR and AscP in wheat cultivars reduced in parallel with the increase in malonic dialdehyde (MDA) content, indicating that the antioxidant enzyme defense system was weakened and lipid peroxidation enhanced. Unlike Ballada and Belchanka, the wheat cv. Beltskaya did not exhibit the increase in GR and AscP activities during progressive soil drought. The increase in MDA content by 16% in this cultivar was only observed after a 7-day drought period. The proline content in leaves of all wheat cultivars increased substantially during drought treatment. Thus, in wheat cultivars examined, different responses of the defense systems were mobilized to implement plant protection against water stress. The activities of antioxidant enzyme defense system depended on wheat cultivar, duration of drought, and the stage of leaf development.  相似文献   

5.
Water stress is a major limitation for plant survival and growth. Several physiological and antioxidative mechanisms are involved in the adaptation to water stress by plants. In this experiment, tea cultivars (TV-1, TV-20, TV-29 and TV-30) were subjected to drought stress by withholding water for 20 days followed by rehydration. An experiment was thus performed to test and compare the effect of dehydration and rehydration in growing seedlings of tea cultivars. The effect of drought stress and post stress rehydration was measured by studying the reactive oxygen species (ROS) metabolism in tea. Water stress decreased nonenzymic antioxidants like ascorbate and glutathione contents with differential responses of enzymic antioxidants in selected clones of Camellia sinensis indicating an oxidative stress situation. This was also apparent from increased lipid peroxidation, O2 and H2O2 content in water stress imposed plants. But the oxidative damage was not permanent as the plants recovered after rehydration. Comparatively less decrease in antioxidants, higher activities of POX, GR, CAT with higher phenolic contents suggested better drought tolerance of TV-1, which was also visible from the recovery study, where it showed lower ROS level and higher recovery of antioxidant property in response to rehydration, thus proving its better recovery potential. On the other hand, highest H2O2 and lipid peroxidation with decrease in phenolic content during stress in TV-29 suggested its sensitivity to drought. The antioxidant efficiency and biochemical tolerance in response to drought stress thus observed in the tested clones of Camellia sinensis can be arranged in the order as TV-30 > TV-1 > TV-29 > TV-20.  相似文献   

6.
Contents of chlorophylls, carotenoids, soluble leaf proteins, and the key enzyme of carbon metabolism—ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39)—in young seedlings and adult leaves of the wheat Triticum aestivum L. cultivars Mironovskaya 808 and Lyutescens 758, contrasting in their water stress tolerances, were compared under conditions of normal available water supply, water deficiency, and subsequent rehydration. It was discovered that compounds displaying a cytokinin activity (6-benzylaminopurine, thidiazuron, kartolin-2, and kartolin-4) reduced the decreases in contents of chlorophylls, carotenoids, soluble leaf proteins, and RuBisCO, progressing with development of water stress, as well as contributed to their more rapid recovery. These compounds with cytokinin activity also accelerated restoration of the compounds studied to their initial concentrations during rehydration. The kartolin preparations caused a maximal protective effect. Water stress had a more pronounced negative effect on the cultivar Lyutescens 758. Dehydration resulted in a more extensive destruction of seedlings compared to leaves of adult plants.  相似文献   

7.
The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed.  相似文献   

8.
The influence of combined and individually applied drought and heat stress was studied in two wheat (Triticum aestivum L.) cultivars: resistant cv. Katya and susceptible cv. Sadovo. Relative water content decreased and electrolyte leakage increased due to individual and combined application of both stresses. Initial heat shock protein profile has been outlined via SDS electrophoresis of leaf extracts. The results obtained were confirmed by immunoblotting with anti-HSP70 monoclonal antibodies, anti-HSP110 polyclonal antibodies and anti-α β-crystalline polyclonal antibodies. The effect of simultaneously applied water stress and heat shock resembled the alterations in protein expression provoked only by water stress and differed significantly from the changes occurring after the individual application of heat stress.  相似文献   

9.
The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed.  相似文献   

10.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

11.
To investigate the role that drought tolerance plays in growth, abscisic acid (ABA) accumulation and electrolyte leakage during water stress were compared in fast- and slow-growing black spruce ( Picea mariana [Mill.] B. S. P.) progenies. Changes in the ABA content of the needles were quantified using an indirect enzyme-linked immuno-sorbent assay validated by gas chromatography electron capture detection. Needle electrolyte leakage was estimated using a conductivity bridge. Seedlings were stressed using (1) osmotic stress, induced by a stepwise increase in concentrations of polyethylene glycol 3 350 (PEG) for ABA study and (2) air drying for electrolyte leakage study. Progenies did not differ in ABA levels under unstressed conditions, but progeny differences were observed under osmotic stress. Needle ABA content increased up to 500% under osmotic stress. Slow-growing black spruce progenies (25 and 46) accumulated more ABA under moderate (18% PEG), but not severe (25% PEG), osmotic stress. The slow-growing progenies also leaked more electrolytes under moderate to severe water stress and lost 50% electrolytes at a higher xylem tension, suggesting they suffered more injury and were less dehydration tolerant. Our previously-published results showed that slow-growing progenies lost their photosynthesis and stomatal conductance more quickly during osmotic stress and recovered more slowly after rehydration. Therefore, tolerance of dehydration leading to a maintenance of physiological integrity during drought stress could explain the fast growth rates of more vigorous black spruce progenies.  相似文献   

12.
The action of thidiazuron, a synthetic growth regulator, was studied on 7-day-old cucumber seedlings (Cucumis sativus L., cv. Monastyrskii) exposed to chilling and sublethal concentrations of lead and copper ions. The extent of injury was assessed from the electrolyte leakage from cotyledonary leaves into distilled water. Separate application of each stress factor induced an increase in membrane permeability; however, their combined application caused a weaker response. A preliminary treatment of seedlings with thidiazuron fully or partly prevented the stress-induced stimulation of electrolyte leakage from cotyledon segments. It is concluded that thidiazuron elevates plant resistance to adverse environments.  相似文献   

13.
The relic endemic nature of Haberlea rhodopensis, which grows in Balkan Peninsula, in combination with its high vegetative desiccation-tolerance, makes this species a good model to study mechanisms behind plant adaptation to severe drought stress. The aim of this study was to evaluate the antioxidant protection provided by Superoxide dismutase (SOD) and Peroxidase (PO) in H. rhodopensis after exposure to and recovery from dehydration at different developmental stages. During dehydration the electrolyte leakage from leaf tissue increased more significantly in post-flowering plants than in flowering plants, while upon subsequent rehydration this parameter showed a very fast decrease to the basic value of fresh leaves and did not depend on developmental stage. Like other higher plant species, SOD and PO demonstrated in H. rhodopensis an ability to adjust their activity very promptly to changing water supply. In addition, the leaves of this resurrection species retained significant activities of SOD and PO even in air-dried state, considered as the most severe form of water stress. The enhanced activity of antioxidant enzymes may either enable the scavenging of the active oxygen species produced at very severe water deficit, and/or carry a potential for resurrection on subsequent rehydration. Upon stress treatment total activities of both enzymes were higher in flowering than post-flowering plants which reveals that developmental stage might be a factor affecting plant stress tolerance. This work identified for the first time SOD isoforms of H. rhodopensis. Native PAGE showed at least six multiple isoforms in the protein extract from leaf tissue of flowering plants, and the differential visualization revealed that four of them were Cu, Zn-SOD isoforms, one was Mn-SOD and one Fe-SOD. These findings provide a good starting point for future study of the SOD gene family of this rare resurrection plant at the molecular level.  相似文献   

14.
The influence of pre-sowing seed treatment with polyamines (2.5 mM putrescine, 5.0 mM spermidine and 2.5 mM spermine) on growth, photosynthetic capacity, and ion accumulation in two spring wheat (Triticum aestivum L.) cultivars MH-97 (intolerant) and Inqlab-91 (tolerant) was examined. The primed seeds of each treatment and non-primed seeds were sown in a field containing 15 dS m−1 NaCl. Although all three polyamines were effective in improving shoot growth and grain yield in both cultivars under saline conditions, the effect of spermine was very pronounced particularly in improving grain yield. Different priming agents did not affect the net CO2 assimilation rate and transpiration rate of either cultivar. However, pre-treatment with spermidine increased stomatal conductance (gs) in the tolerant cultivar, whereas with spermine stomatal conductance decreased in the intolerant cultivar under salt stress. Priming agents had different effects on the accumulation of different ions in wheat plant tissues. When spermidine and distilled water were used as priming agents, they were effective in reducing shoot [Na+] in the tolerant and intolerant cultivars, respectively under saline conditions. Although all priming agents caused an increase in shoot [K+], distilled water was more effective in improving shoot [K+] in both cultivars under salt stress. Pre-treatment with spermidine was very effective in reducing shoot [Cl] under saline conditions particularly in the tolerant cultivar. However, the pattern of accumulation of different ions in roots due to different seed priming treatments was not consistent in either cultivar except that root Na+ decreased due to priming with spermine and spermidine in the intolerant and tolerant cultivars under saline conditions. In conclusion, although all three priming agents, spermine, spermidine and putrescine, were effective in alleviating the adverse effect of salt stress on wheat plants, their effects on altering the concentration of different ions and growth were different in the two cultivars differing in salt tolerance.  相似文献   

15.
16.
The aim of this work was to investigate the role of the antioxidant enzymes in salt tolerance comparing the salt-sensitive (Pérola) and a salt-tolerant (Pitiúba) cultivar of cowpea [Vigna unguiculata (L.) Walp.]. Salt stress (100 mM NaCl for 8 d) reduced the leaf growth rate more in the sensitive cultivar. The salt-induced decrease in the relative water content, Na+ accumulation and increase in leaf electrolyte leakage was similar in both cultivars. Salt stress induced a higher increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and phenol peroxidase (POX) in the tolerant cultivar than in sensitive one.  相似文献   

17.
The differences in some morphological and physiological characteristics of sun- and shade-adapted Haberlea rhodopensis plants were compared. Changes in the photosynthetic activity, electrolyte leakage from leaf tissues, malondialdehyde content (MDA) and leaf anatomy were studied at different degrees of desiccation as well as after rehydration of plants. The MDA content in well-watered sun Haberlea plants was higher compared to shade plants suggesting higher lipid peroxidation, which is commonly regarded as an indicator of oxidative stress, but desiccation of plants at high light did not cause additional oxidative damage as judged by the unaffected MDA content. The electrolyte leakage from dried leaves (8% RWC) from both shade and sun plants increased fourfold indicating similar membrane damage. However, the recovery after rehydration showed that this damage was reversible. Well-watered sun plants had higher photosynthetic activity probably due to the larger thickness of the mesophyll layer in such plants. On the other hand, desiccation at high light reduced CO2 assimilation which was in accordance with the stronger reduction of stomatal conductance. Stomata were visible only on the abaxial side of sun leaves having also higher abundance of non-glandular trichomes. Increased trichomes density and epicuticular waxes and filaments upon desiccation could help plants to increase reflection, reduce net radiation income, slow down the rate of water loss and survive adverse conditions.  相似文献   

18.
Lauriano  J.A.  Lidon  F.C.  Carvalho  C.A.  Campos  P.S.  do Céu Matos  M. 《Photosynthetica》2000,38(1):7-12
The effects of drought on thylakoid acyl lipid composition, photosynthetic capacity (P max), and electrolyte lekage were evaluated in two-months-old peanut cultivars (57-422, 73-30, GC 8-35) growing in a glasshouse. For lipid studies, plants were submitted to three treatments by withholding irrigation: control (C), mild water stress (S1), and severe water stress (S2). Concerning membrane and photosynthetic capacity stability, drought was imposed by polyethylene glycol (PEG 600). In the cv. 73-30 a sharp decrease in the content of thylakoid acyl lipids was observed, already under S1 conditions, whereas cv. 57-422 was strongly affected only under S2. Cv. GC 8-35 had the lowest content of acyl lipids under control conditions, a significant increase under S1 conditions, and only under S2 a decrease occurred. Thus concerning lipid stability, cv. 73-30 was the most sensitive. Among lipid classes, phospholipids and galactolipids were similarly affected, as was MGDG relatively to DGDG. Water deficit imposed by PEG induced a higher increase in electrolyte leakage in cv. 73-30 than in the other cvs. A positive relationship between acyl lipid concentration and membrane integrity was found in all studied cvs. A positive association between acyl lipid concentration, membrane integrity, and P max was found in the cvs. 57-422 and 73-30.  相似文献   

19.
We studied the effect of water stress imposed at anthesis and pre-anthesis stages on oxidative stress and antioxidant activity in four wheat cultivars, two hexaploid Triticum aestivum cultivars, drought resistant cv. C 306 and drought susceptible cv. Hira, and two tetraploid cultivars, T. durum cv. A 9-30-1 and T. dicoccum cv. HW 24. Water stress decreased relative water content (RWC), membrane stability index (MSI), and increased H2O2 and malondialdehyde (MDA) contents as well as activity of superoxide dismutase (SOD), catalase (Cat) and peroxidase (POX) in all the genotypes at all the stages. Both the tetraploid cultivars showed higher RWC, MSI and SOD activity, and lower H2O2 and MDA contents under water stress than hexaploid ones. Cat and POX activities were highest in C 306.  相似文献   

20.
Contents of chlorophylls, carotenoids, soluble leaf proteins, and the key enzyme of carbon metabolism--ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39)--in young seedlings and adult leaves of the wheat Triticum aestivum L. cultivars Mironovskaya 808 and Lyutestsens 758, contrasting in their water stress tolerances, were compared under conditions of normal available water supply, water deficiency, and subsequent rehydration. It was discovered that compounds displaying a cytokinin activity (6-benzylaminopurine, thidiazuron, cartolin-2, and cartolin-4) reduced the decreases in contents of chlorophylls, carotenoids, soluble leaf proteins, and RuBisCO progressing with development of water stress. These compounds with cytokinin activity also accelerated restoration of the compounds studied to their initial concentrations during rehydration. The cartolin preparations caused a maximal protective effect. Water stress had a more pronounced negative effect on cultivar Lyutestsens 758. Dehydration resulted in a more extensive destruction of seedlings compared to leaves of adult plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号