首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
1. An endonuclease has been isolated from the nuclei of rye (Secale cereale L) germ and partially purified. The enzyme shows optimum activity over the pH range 5.4-7.4 towards both DNA and RNA, and has no phosphomonoesterase or phosphodiesterase activity. 2. DNA is degraded by the rye germ nuclease to oligonucleotides of similar size, and RNA to oligonucleotides and mononucleotides containing a C-terminal 5'-phosphate group. 3. The rate of hydrolysis of nuclear acids by the enzyme decreases in the following order: native DNA greater than denatured DNA greater than RNA. Synthetic polynucleotides are hydrolysed at a rate decreasing in the order: poly(A) greater than poly(U) greater than poly(C) greater than poly(G).  相似文献   

2.
An extracellular nuclease from Bacillus firmus VKPACU-1 was multifunctional enzyme, this nuclease hydrolyzed poly U rapidly and more preferentially than the other homopolyribonucleotides. Hydrolysis of RNA this enzyme released mononucleotides in the order 5'UMP > 5'AMP > 5'GMP where as in hydrolysis of DNA the mononucleotides in the order of 5'dAMP > 5'dGMP > 5'dTMP and oligonucleotides. Uridylic linkages in RNA and adenylic linkages in DNA were preferentially cleaved by the nuclease. Nuclease produced oligonucleotides having only 3' hydroxyl and 5' phosphate termini. Present nuclease hydrolyzed RNA and DNA released oligonucleotides as major end products and mononucleotides, suggesting an endo mode of action.  相似文献   

3.
An extracellular nuclease from Bacillus firmus VKPACU-1 was multifunctional enzyme, this nuclease hydrolyzed poly U rapidly and more preferentially than the other homopolyribonucleotides. Hydrolysis of RNA this enzyme released mononucleotides in the order 5′UMP > 5′AMP > 5′GMP where as in hydrolysis of DNA the mononucleotides in the order of 5′dAMP > 5′dGMP > 5′dTMP and oligonucleotides. Uridylic linkages in RNA and adenylic linkages in DNA were preferentially cleaved by the nuclease. Nuclease produced oligonucleotides having only 3’ hydroxyl and 5’ phosphate termini. Present nuclease hydrolyzed RNA and DNA released oligonucleotides as major end products and mononucleotides, suggesting an endo mode of action.  相似文献   

4.
1. The interaction between quinacrine mustard and mononucleotides and polynucleotides was investigated by fluorimetry and absorbance spectrophotometry. 2. The fluorescence spectrum of quinacrine mustard is independent of the ionic strength and pH. The dependence of the quinacrine mustard fluorescence intensity on ionic strength, pH and anions is described. 3. The fluorescence intensity of quinacrine mustard was enhanced with the mononucleotide adenylic acid and polynucleotides such as poly(rA), poly(rU) and poly(rA,rU). 4. Quenching of the fluorescence intensity of quinacrine mustard occurred with the mononucleotide guanylic acid and with poly(rG) and poly(rC,rG). 5. The mononucleotide cytidylic acid or poly(rC) showed no effect on the fluorescence intensity of quinacrine mustard. 6. The interaction between the dye and native DNA species was also dependent on the presence of base-specific binding sites in the DNA. The higher the (G+C) content was in the native DNA tested the higher was the quenching effect on the fluorescence intensity of quinacrine mustard. 7. No interaction was found between the dye and methylated DNA. The binding between quinacrine mustard and apurinic DNA was confirmed to be in the phosphate groups of the purines.  相似文献   

5.
V A Shepelev 《FEBS letters》1984,172(2):172-176
Binding constants have been measured for the interaction of the protein HMG1 with native DNA, denatured DNA and a number of polynucleotides at near-physiological ionic strengths, using gel filtration and thermal denaturation. The interaction of HMG1 with DNA is shown to be noncooperative and reversible. Nucleic acids form the following series in order of increasing binding constants: poly(U) integral of poly(A) less than poly(dA) less than dsDNA integral of poly(dA) X poly(dT) integral of poly(dG) X poly(dC) much less than poly[d(A-T]) integral of ssDNA.  相似文献   

6.
The rate constants of 1H----3H exchange between water and C8H-groups of purine residues of alternating polynucleotides: poly[d(A-C)].poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)], as well as Escherichia coli DNA, dAMP and dGMP, in solutions with high concentration (4.3 or 6 M) CsF, in water ethanol (60%) solution and (in comparison) in 0.15 M NaCl were determined at 25 degrees C. The 1H----3H exchange rate exchange rate constants for adenylic (kA) and guanylic (kG) residues of polynucleotides were compared with the corresponding constant for DNA and mononucleotides. It was shown that at conditions when poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)] exhibit the "X-form" CD spectrum, alteration of exchange rates in polynucleotides (approximately 2-fold increase in kA in CSF and approximately 1.5-fold decrease in kA and kG in 60% ethanol with 0.15 M NaCl) is due to the effect of solvents on the chemical reactivity of purine residues, but does not reflect a conformational transition. The analysis of these results allows us to conclude, that alternating polynucleotides under the above mentioned conditions retain roughly the conformations inherent in them in 0.15 M NaCl: poly[d(A-C)].poly[d(G-T)] conformation in 4.3 m CsF or 60% ethanol differs only insignificantly from the "canonic" B-DNA, whereas the poly[d(A-T)].poly[d(A-T)] conformation in 6 M CSF corresponds to B-alternating DNA.  相似文献   

7.
Replication factor C (RFC) catalyzes assembly of circular proliferating cell nuclear antigen clamps around primed DNA, enabling processive synthesis by DNA polymerase during DNA replication and repair. In order to perform this function efficiently, RFC must rapidly recognize primed DNA as the substrate for clamp assembly, particularly during lagging strand synthesis. Earlier reports as well as quantitative DNA binding experiments from this study indicate, however, that RFC interacts with primer-template as well as single- and double-stranded DNA (ssDNA and dsDNA, respectively) with similar high affinity (apparent K(d) approximately 10 nm). How then can RFC distinguish primed DNA sites from excess ssDNA and dsDNA at the replication fork? Further analysis reveals that despite its high affinity for various DNA structures, RFC selects primer-template DNA even in the presence of a 50-fold excess of ssDNA and dsDNA. The interaction between ssDNA or dsDNA and RFC is far less stable than between primed DNA and RFC (k(off) > 0.2 s(-1) versus 0.025 s(-1), respectively). We propose that the ability to rapidly bind and release single- and double-stranded DNA coupled with selective, stable binding to primer-template DNA allows RFC to scan DNA efficiently for primed sites where it can pause to initiate clamp assembly.  相似文献   

8.
We used UV-vis absorption spectroscopy, fluorescence spectrophotometry and molecular docking calculations to investigate intermolecular interaction between the cationic dye, Nile blue (NB), and synthetic polynucleotides, poly(A-T), poly(G-C) and calf thymus DNA (Ct-DNA) at physiological pH. Strong hypsochromic absorbance and fluorescence quenching were observed that showed strong binding of NB to these polynucleotides and DNA. The binding affinity values derived from maximum absorption of the spectra of NB bound to various polynucleotides and Ct-DNA concentrations suggests that NB exhibits greater binding affinity to poly(G-C) than to poly(A-T). The thermodynamic parameters suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of NB to DNA. The molecular docking results suggested that NB was an intercalator of the stacked base pairs of Ct-DNA.  相似文献   

9.
The bacteriophage T4 regA protein is a translational repressor of a group of T4 early mRNAs. We have characterized the binding of regA protein to polynucleotides and to specific RNAs. Binding to nucleic acids was monitored by the quenching of the intrinsic tryptophan fluorescence of regA protein. regA protein exhibited differential affinities for the polynucleotides examined, with the order of affinity being poly(rU) greater than poly(dT) greater than poly(dU) = poly(rG) greater than poly(rC) = poly(rA). The binding site size calculated for regA protein binding to poly(rU) was n = 9 +/- 1 nucleotides. Cooperativity was observed in binding to multiple-site oligonucleotides, with a cooperativity parameter (omega) value of 10-22. To study the specific interaction between regA protein and T4 gene 44 mRNA, the affinity of regA protein for synthetic gene 44 RNA fragments was measured. The association constant (Ka) for regA protein binding to gene 44 RNA fragments was 100-fold higher than for binding to nontarget RNA. Study of variant gene 44 RNA fragments indicated that the nucleotides required for specific binding are contained within a 12-nucleotide sequence spanning -12 to -1, relative to the AUG codon. The bases of five nucleotides (indicated in upper case type) are critical for specific regA protein interaction with the gene 44 recognition element, 5'-aaUGAGgAaauu-3'. These studies further showed that formation of a regA protein-RNA complex involves a maximum of 2-3 ionic interactions and is primarily an enthalpy-driven process.  相似文献   

10.
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.  相似文献   

11.
This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs.  相似文献   

12.
The interactions of three tryptophan-containing peptides, KWK, KGWK tert-butyl ester, and KGWGK, with two self-complementary dodecamers of the same base composition but different sequence were studied by UV, CD, and fluorescence spectroscopy. The oligonucleotides, d-AGATCTAGATCT and d-AAGCTTAAGCTT, contain tandem repeats of the recognition site for the restriction enzyme BglII in the former and HindIII in the latter. Thermal transition data in dilute solutions and in 0.01 M NaCl indicate these dodecamers to be present in hairpin forms. Binding of peptides to these hairpins was followed by tryptophan fluorescence quenching titrations at 10 mM Na+; the data suggest intercalation of the indole ring. The association constants for the peptide-oligonucleotide (PN) complexes are an order of magnitude higher (10(5) M) than those reported with polynucleotides [10(4) M; Rajeswari et al. (1987) Biochemistry 26, 6825]. The pentapeptide, KGWGK, discriminates between BglII and HindIII sequences with higher affinity for the HindIII dodecamer. The CD maximum of KGWGK, at 220 nm, is drastically diminished upon interaction with oligonucleotides. The ellipticity at 220 nm is halved at 10 times less P/N ratio with the HindIII dodecamer than the BglII dodecamer, suggesting stronger binding to the HindIII dodecamer. The results are discussed in terms of two different modes of binding of oligopeptides to the DNA hairpins.  相似文献   

13.
Nuclease P1 was found to attack RNA and heat-denatured DNA in endo- and exonucleolytic manners. The evidence was as follows: (1) In the early stage of digestion both mononucleotides and oligonucleotides with various sizes were formed simultaneously with rapid fragmentation of polynucleotides. (2) The relative amount of the monomer was larger than that of any class of oligomers throughout the process of digestion. Nuclease P1 showed a preference for the linkages between 3′-hydroxyl group of adenosine or deoxyadenosine and the 5′-phosphoryl group of the adjacent nucleotides. p-Nitrophenyl ester of 3′-dTMP was hydrolyzed to thymidine and p-nitrophenyl phosphate, while p-nitrophenyl ester of 5′-dTMP was not attacked. It is concluded from these findings that the basic structure required for the substrate of nuclease P1 is a nucleoside 3′-phosphate-containing structure and the enzyme cleaves the diester bond between the phosphate and the 3′-hydroxyl group of the sugar.  相似文献   

14.
With the goal to design ligands recognizing extended regions on dsDNA, a covalent dimer of the fluorescent dye Hoechst 33258 [bis-HT(NMe)] composed of two dye molecules linked via the phenol oxygen atoms with a (CH2)3-N+ H(CH3)-(CH2)3 fragment was constructed using computer modeling and then synthesized. Its interactions with the double-stranded DNA (dsDNA) were studied by fluorescent and UV-Vis spectroscopy and circular (CD) and linear dichroism (LD). Based on variations in the affinity to the dsDNA, it was shown that complexes of three types are formed. The first type complexes result from binding of a bis-HT(NMe) monomer in the open conformation; in this case the ligand covers the total dsDNA turn and is located in the minor groove according to the positive value of CD at 370 nm. In addition, the ability to form bis-HT(NMe)-bridges between two dsDNA molecules, i.e., each of the two bis-HT(NMe) ends binds to two different dsDNA molecules, was demonstrated for the first type complexes. Spectral characteristics (maximal absorption at 362 nm, positive sign, and maximal value of CD at 370 nm) of the first type complexes conform to those of the specific Hoechst 33258 complex with poly[d(A-T)] x poly[d(A-T]. The second type complexes correspond to the bis-HT(NMe) sandwich (as an inter- or intramolecular) binding to dsDNA with stoichiometry > or = 5 bp. Thereby, a negative LD at 360 nm and the location of bis-HT(NMe) sandwiches in the minor groove of B form dsDNA seems contradictory. Spectral characteristics (maximal positive CD at 345 nm, a dramatic decrease in fluorescence intensity and the shift of its maximum to 490 nm) of these complexes favor a suggestion that this binding correlates to the formation of nonspecific dimeric Hoechst 33258 complex with dsDNA. The third type complexes are characterized by stoichiometry of one bis-HT(NMe) molecule per approximately 2 bp and the tendency to zero of LD values at 270 and 360 nm. We assume that in these complexes bis-HT(NMe) sandwich dimers are formed on dsDNA. The complexes of this type conform to the aggregation type complex of Hoechst 33258 with dsDNA. The ability of bis-HT(NMe) to cover the whole dsDNA turn or form bridges with two dsDNA upon the formation of the first type complexes essentially distinguishes it from Hoechst 33258, which can only occupy 5 bp and does not form such bridges. This specific property of bis-HT(NMe) may support new biological activities.  相似文献   

15.
Cystine peptide dimer (Lys-Gly-Val-Cys-Val-N2H2Dns)2 with S-S bridge was synthesized and its interactions with DNA and synthetic polynucleotides have been studied by optical spectroscopy methods. By recording fluorescent titration curves we have shown that the affinity of the peptide to different synthetic polynucleotides decreases in the order: poly(dG).poly(dC) greater than poly(dA).poly(dT) greater than poly(dGC).poly(dGC). The stability of complexes to increasing concentrations of NaCl diminishes in the same order. The association constant is about 20-fold greater for peptide binding to poly(dG).poly(dC) than to poly(dA).poly(dT). By using circular dichroism and fluorescence measurements we have shown that the peptide competes for the binding sites on DNA with two minor-groove binding antibiotics--distamycin A and sybiromycin. These results have suggested that the peptide also binds in the DNA minor groove. Investigation of the interactions between such peptides and DNA may be useful for constructing ligands with combined specificity to DNA.  相似文献   

16.
A major endonuclease has been purified approximately 800-fold from rat liver nuclei using poly(A) as substrate. The enzyme had a molecular weight of about 50,000, and active fractions were obtained which contained no nucleic acid. Enzymatic activity was optimal between pH 6 and 7 and was totally dependent on the presence of a divalent cation. The reaction was inhibited by high ionic strength, polydextran sulfate, heparin, and sodium pyrophosphate. The purified enzyme readily hydrolyzed poly(A), poly(U), poly(C), and denatured DNA, whereas poly(G) was not degraded, and transfer RNA, ribosomal RNA, and native DNA were hydrolyzed only at relatively slow rates. These data suggest that the enzyme may be specific for single-stranded polynucleotides. The purified enzyme was essentially devoid of exonuclease activity, and the products of exhaustive endonuclease digestion of poly(A) were small oligonucleotides terminated with a 5'-phosphoryl group. Evidence was obtained that this endonuclease is localized in the nucleoplasm. Possible functions for this activity are discussed.  相似文献   

17.
Nuclease Rsn from Rhizopus stolonifer catalyzes the hydrolysis of ss- and dsDNA in a ratio of approximately 2:1. Time course of 3' and 5' terminal analysis of the hydrolytic products of ss- and dsDNA showed that nuclease Rsn does not show any strict base preference and cleaves DNA in a non-specific manner. Moreover, separation of the hydrolytic products of ss- and dsDNA in the presence of Mg2+, Mn2+ or Co2+ showed the predominance of tetra-, tri-, and dinucleotides followed by mononucleotides, suggesting an endo mode of action.  相似文献   

18.
The nonstructural protein 3 (NS3) appears to be the most promising target for anti-flavivirus therapy because of its multiple enzymatic activities that are indispensable for virus replication. NS3 of dengue virus type 2 (DEN2) is composed of two domains, a serine protease in the N-terminal domain (NS3pro) and RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicase at the C-terminus (NS3h). NS3 plays an important role in viral replication and the coordinated regulation of all the catalytic activities in the full-length NS3 protein. In this study, a plasmid harboring the NS3 helicase domain (NS3h) was constructed by PCR. The 56.5 kDa NS3h protein was purified by metal-chelate affinity chromatography followed by renaturation, mediated by artificial chaperone-assisted refolding, which yielded the active helicase. NTPase activity was assayed with Malachite Green. The NTPase activity in the presence of poly(U) showed a higher turnover number (k cat) and a lower K m value than without poly(U). The activity increased approximately fourfold in the presence of polynucleotides. This indicates that NTPase activity of dengue NS3 can be stimulated by polynucleotides. A helicase assay based on internal fluorescence quenching was conducted using short internally quenched DNA oligonucleotides as substrates. Significant fluorescence signaling increase was observed in the absence of polynucleotides such as poly(U). No unwinding activity was observed with addition of poly(U). The approach we describe here is useful for the further characterization of substrate specificity and for the design of high-throughput assays aimed at discovery of inhibitors against NS3 NTPase/helicase activities.  相似文献   

19.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

20.
Abstract

The influence of base composition (and sequence) on the process of interaction between synthetic polynucleotides and spermine, has been investigated using ultraviolet (including second derivative) spectroscopy, and electric dichroism.

Different binding modes of spermine to poly(dG-dC) as compared to A-T containing polynucleotides, were evidenced. An interaction with the N7 and 06 of guanine is probably partially involved in the former case while simple electrostatic interaction with the phosphate groups would dominate in the latter.

In the intermediate binding range (spermine over DNA phosphate molar ratios Sp/P of the order of 0.1 to 0.2), the complexes with poly(dA) · poly(dT) and those with poly(dA-dT) displayed an important contribution of a permanent dipole moment to the orientation mechanism, as detected by the application of bipolar pulses in electric dichroism experiments. Just prior to precipitation (at Sp/P slightly larger than 0.3), these polynucleotides show electric dichroism and relaxation times characteristics corresponding to toroidal particles formation resulting from a bending of their chains. This implies asymmetric binding to phosphate sites on A-T containing polynucleotides. At low Sp/P ratios, spermine induced a stiffening of poly (dG-dC). No influence of spermine on the orientation mechanism of this polynucleotide was detected for Sp/P values ranging from zero to 0.35. The spermine-induced bending of A-T rich regions thus appears to be essential for DNA condensation into toroidal particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号