首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Central dopaminergic system serves two major physiological functions, i.e., motivation activation and motor coordination. The evidence that serotonergic system could modulate these two pathways suggests that serotonin (5-HT) and related agents may possess potential therapeutic values against certain mental or motor disorders caused by dopamine malfunction. This study presents novel modulatory role for serotonergic agents in rat behaviors which have been speculated to be associated with forebrain dopamine system. Three serotonergic agents, including DOI (5-HT2 agonist), ritanserin (5-HT2 antagonist) and amperozide (5-HT2/D2 antagonist) were evaluated, focused particularly on the atypical antipsychotic amperozide. It was found that both amperozide and ritanserin could inhibit amphetamine-induced hyperlocomotion, and only amperozide inhibited nomifensine-induced hyperlocomotion. Amperozide could also reduce significantly the rearing but not sniffing behaviors. Furthermore, DOI and amperozide, but not ritanserin, reduced the haloperidol-induced catalepsy. [corrected] When animals were unilaterally radiofrequency lesioned in either caudate putamen (CP) or nucleus accumbens (NA), amperozide reduced both the ipsi- and contralateral turns in CP-lesioned, but reduced only ipsilateral turns in NA-lesioned rats. Via in vivo microdialysis, we demonstrated that amperozide could increase the extracellular dopamine release in both CP and NA in either intact or para-chlorophenylalanine (p-CPA) serotonin-depleted rats. Overall, we conclude that the modulatory role of amperozide on forebrain dopamine system requires not only 5-HT2/D2 antagonistic but also the blockade of dopamine transporter.  相似文献   

2.
E Eriksson 《Life sciences》1990,47(23):2111-2117
The effects of amperozide (a diphenylbutylpiperazinecarboxamide derivative) on the uptake and release of 3H-dopamine in vitro were investigated. Amperozide inhibited the amphetamine-stimulated release of dopamine from perfused rat striatal tissue in a dose-dependent manner. With 1 and 10 microM amperozide there was significant inhibition of the amphetamine-stimulated release of dopamine, to 44 and 36% of control. In contrast, 10 microM amperozide significantly strengthened the electrically stimulated release of dopamine from perfused striatal slices. Amperozide 1-10 microM had no significant effect on the potassium-stimulated release of dopamine. 10 microM amperozide also slightly increased the basal release of 3H-dopamine from perfused striatal tissue. These effects on various types of release are similar to those reported for uptake inhibitors (Bowyer et al, 1984). The uptake of dopamine in striatal tissue was inhibited by amperozide with IC50 values of 18 microM for uptake in chopped tissue and 1.0 microM for uptake in synaptosomes. Amperozide also inhibited the uptake of serotonin in synaptosomes from frontal cortex, IC50 = 0.32 microM and the uptake of noradrenaline in cortical synaptosomes, IC50 = 0.78 microM. In conclusion, amperozide shows uptake-inhibiting properties in both release and uptake studies done in vitro on the rat. In the in vivo studies, however, amperozide differs from dopamine uptake inhibitors.  相似文献   

3.
Amperozide, a novel atypical antipsychotic drug with few extrapyramidal side effects, is a strong serotonin2 (5-HT2) antagonist but has low affinity for dopamine receptors in vitro. The effect of amperozide on the dopaminergic synapse was studied with an in vivo microdialysis technique using anesthetized male Sprague-Dawley rats. Following implantation of dialysis probes into the striatum and nucleus accumbens (NuAc), amperozide was intravenously infused as six consecutive incremental doses (0.5, 0.5, 1.0, 2.0, 4.0 and 8.0 mg/kg) at intervals of 15 min. From the beginning of drug infusion, perfusates were collected in fractions every 30 min throughout a total period of 120 min. The samples were then immediately analyzed by high-performance liquid chromatography with electrochemical detection. Amperozide induced a dose-related elevation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolacetic acid (5-HIAA) levels in both areas.p-Chlorophenylalanine (pCPA) pretreatment abolished the production of 5-HIAA in both areas and attenuated the amperozide-induced rise of DOPAC but not of dopamine. After pretreatment with an intravenous 5-HT3 antagonist, MDL 72222, the amperozide-induced changes in dopamine, DOPAC and 5-HIAA in both areas were lower than in the saline control group. Preliminary data showed that afterpCPA pretreatment, incremental concentrations of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide perfused via the probe also produced significant elevation of dopamine and DOPAC levels in these two areas. Taken together, these results suggest that amperozide may directly block 5-HT2 receptors in the striatum and NuAc, thereby enhancing 5-HT transmission. The enhanced 5-HT transmission may activate postsynpatic 5-HT3 receptors located on the dopaminergic terminals, leading to changes in dopamine transmission in these two areas.  相似文献   

4.
B Dean  D L Copolov 《Life sciences》1989,45(5):401-411
The human platelet, which takes up and releases dopamine, has been proposed as a peripheral model for the study of dopaminergic neurons in the central nervous system (CNS). In addition, the platelet has been shown to possess membrane components with pharmacological properties similar to the dopamine-D1 (DA-D1) and D2 (DA-D2) receptor on dopaminergic neurons. We have therefore studied the specificity of the platelet uptake system for dopamine and, as dopamine uptake comprises both internalised and membrane bound dopamine, the contribution of the DA-D1 and DA-D2 receptor to the uptake of dopamine has been assessed. Significant uptake of 3H-dopamine by platelet rich plasma (PRP) occurred after 10 min incubation at 37 degrees C, uptake being maximal after 90 min. In contrast, at 4 degrees C no uptake of 3H-dopamine occurred up to 60 mins incubation but at 20 degrees C was approximately 8% of the 60 min uptake at 37 degrees C. The neurotransmitters serotonin and dopamine inhibited dopamine uptake by platelets in a dose dependent manner. Uptake of dopamine appeared to be via two systems, one of high affinity with low capacity and the other of lower affinity but high capacity. In contrast, noradrenaline, adrenaline, acetylcholine, gamma-aminobutyric acid and histamine (10 microM) had no effect on dopamine uptake by platelets. The DA-D1 receptor antagonist SCH 23390 (10 microns) and the DA-D2 receptor antagonists (10 microM) spiperone, domperidone and (+)-butaclamol did not significantly affect dopamine uptake by platelets. In addition, ouabain and desipramine (100 microM) inhibited dopamine uptake by 21% and 24% respectively whilst reserpine and imipramine (100 microM) increased uptake by 14% and 15%. We therefore conclude that platelets take up dopamine via a selective, temperature dependent mechanism. Our data also suggest that dopamine uptake by platelets does not involve the DA-D1 or DA-D2 receptor.  相似文献   

5.
S Matsubara  H Y Meltzer 《Life sciences》1989,45(15):1397-1406
The effect of acute treatment with seven atypical antipsychotic drugs and four typical antipsychotic drugs on serotonin2 (5-HT2) receptor binding sites in rat cerebral cortex was studied. Among the atypical antipsychotic drugs examined, clozapine, fluperlapine, RMI-81582 and setoperone decreased the density of 5-HT2 receptors, but ticspirone, amperozide and melperone did not. None of the drugs affected the Kd value. Among the typical antipsychotic drugs, loxapine decreased Bmax and increased the Kd of 5-HT2 receptor binding sites, whereas chlorpromazine and cis-flupenthixol had no effect. Clothiapine, a typical antipsychotic drug of the same chemical class as clozapine, decreased Bmax without increasing Kd. The downregulation of 5-HT2 receptor binding sites following a single injection of clozapine, 20 mg/kg, remained almost unchanged during the first 72 hrs and was still significantly decreased for up to 120 hrs. There was no relationship between the affinity for the downregulation of rat cortical 5-HT2 receptor binding site and 5-HT2 receptor density. Coadministration of the D1 dopamine agonist, SKF-38393, did not affect the clozapine-induced downregulation. It is suggested that rapid and prolonged downregulation of 5-HT2 receptor sites is characteristic of some but not all atypical antipsychotic drugs and is not specific to atypical antipsychotic drugs. Dibenzo-epines (clozapine, loxapine, amoxapine, chlothiapine) consistently downregulate 5-HT2 receptors in frontal cortex after acute treatment.  相似文献   

6.
7.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

8.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

9.
The optically pure enantiomers of the potential atypical antipsychotic agents 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 5) and 5-methoxy-2-{N-[2-(2,6-dimethoxy)benzamidoethyl]-N-n-propylamino}t etralin [5-OMe-(2,6-di-OMe)-BPAT, 6] were synthesized and evaluated for their in vitro binding affinities at alpha1-, alpha2-, and beta-adrenergic, muscarinic, dopamine D1, D2A, and D3, and serotonin 5-HT1A and 5-HT2 receptors. In addition, their intrinsic efficacies at serotonin 5-HT1A receptors were established in vitro. (S)- and (R)-5 had high affinities for dopamine D2A, D3, and serotonin 5-HT1A receptors, moderate affinities for alpha1-adrenergic and serotonin 5-HT2 receptors, and no affinity (Ki > 1000 nM) for the other receptor subtypes. (S)- and (R)-6 had lower affinities for the dopamine D2A and the serotonin 5-HT1A receptor, compared to (S)- and (R)-5, and hence showed some selectivity for the dopamine D3 receptor. The interactions with the receptors were stereospecific, since the serotonin 5-HT1A receptor preferred the (S)-enantiomers, while the dopamine D2A and D3 receptors preferred the (R)-enantiomers of 5 and 6. The intrinsic efficacies at the serotonin 5-HT1A receptor were established by measuring their ability to inhibit VIP-induced cAMP production in GH4ZD10 cells expressing serotonin 5-HT1A receptors. Both enantiomers of 5 behaved as full serotonin 5-HT1A receptor agonists in this assay, while both enantiomers of 6 behaved as weak partial agonists. The potential antipsychotic properties of (S)- and (R)-5 were evaluated by establishing their ability to inhibit d-amphetamine-induced locomotor activity in rats, while their propensity to induce extrapyramidal side-effects (EPS) in man was evaluated by determining their ability to induce catalepsy in rats. Whereas (R)-5 was capable of blocking d-amphetamine-induced locomotor activity, indicative of dopamine D2 receptor antagonism, (S)-5 even enhanced the effect of d-amphetamine, suggesting that this compound has dopamine D2 receptor-stimulating properties. Since both enantiomers also were devoid of cataleptogenic activity, they are interesting candidates for further exploring the dopamine D2/serotonin 5-HT1A hypothesis of atypical antipsychotic drug action.  相似文献   

10.
Several classes of drugs that modify serotonin (5-HT) neurotransmission are either currently used, or are being evaluated for their potential use in the treatment of anxiety, schizophrenia, and depression. 5-HT1A agonists are considered potential anxiolytics, while some atypical antipsychotics are potent 5-HT2 antagonists (and also have modest dopamine D2 affinity). Furthermore, there is a diverse group of serotonergic drugs that may be effective antidepressants. Secretion of ACTH, corticosterone/cortisol, prolactin, renin, oxytocin and vasopressin are stimulated by activation of different 5-HT receptor subtypes, while other neurotransmitter receptors also influence the secretion of these hormones. We compared the receptor binding profiles of 5-HT anxiolytics, antipsychotics and antidepressants with their endocrine effects. These comparisons could aid in understanding both the therapeutic and side effects of these drugs.  相似文献   

11.
A series of new benzimidazole-arylpiperazine derivatives III were designed, synthesized and evaluated for binding affinity at serotoninergic 5-HT(1A) and 5-HT(3) receptors. Compound IIIc was identified as a novel mixed 5-HT(1A)/5-HT(3) ligand with high affinity for both serotonin receptors and excellent selectivity over alpha(1)-adrenergic and dopamine D(2) receptors. This compound was characterized as a partial agonist at 5-HT(1A)Rs and a 5-HT(3)R antagonist, and was effective in preventing the cognitive deficits induced by muscarinic receptor blockade in a passive avoidance learning test.  相似文献   

12.
Iloperidone has demonstrated an interesting monoamine receptor profile in radioligand binding studies, with nanomolar affinity for certain noradrenaline, dopamine, and serotonin receptors. In this study, the agonist/antagonist activity of iloperidone was determined in cell lines expressing recombinant human D(2A), D(3), alpha(2C), 5-HT(1A), or 5-HT(6) receptors. With the exception of 5-HT(6) receptors, these receptors are negatively coupled to cyclase. Thus, after stimulation with forskolin, the agonists dopamine (at D(2A) and D(3)), noradrenaline (at alpha(2C)), or 8-OH-DPAT (at 5-HT(1A)) induced a reduction in cAMP accumulation. Conversely, activation of the 5-HT(6) receptor by 5-HT led to an increase in cAMP accumulation. Iloperidone alone was devoid of significant agonist activity but inhibited the agonist response in all 5 cell lines in a surmountable and concentration-dependent fashion. Iloperidone was most potent at D(3) receptors (pK(B) 8.59 +/- 0.20; n = 6), followed by alpha(2C) (pK(B) 7.83 +/- 0.06; n = 15), 5-HT(1A) (pK(B) 7.69 +/- 0.18; n = 10), D(2A) (pK(B) 7.53 +/- 0.04; n = 11) and 5-HT(6) (pK(B) 7.11 +/- 0.08; n = 11) receptors.  相似文献   

13.
The dopamine D4 receptor is a G protein-coupled receptor that binds with high affinity various antipsychotics. The receptor may be involved in attention/cognition, and in genetic studies a polymorphic repeat sequence in its coding sequence has been associated with attention deficit/hyperactivity disorder. We developed an inducible episomal expression system based on the reverse tetracycline transactivator and Epstein-Barr viral sequences. In HEK293rtTA cells expressing the dopamine D4 receptor from this episomal expression vector, addition of doxycycline in combination with sodium butyrate and trichostatin A induces high levels of receptor expression, resulting in 1970 +/- 20 fmol/mg membrane protein. Addition of the dopamine D4 receptor and serotonin 5-HT2A receptor antagonist pipamperone to these cells further increased the expression of the dopamine receptor, reaching 3800 +/- 60 fmol/mg membrane protein. This up-regulation was not restricted to the dopamine D4 receptor but was also found for the serotonin 5-HT2A receptor. We further provide evidence that the increase in receptor expression is not due to increased mRNA synthesis. As pipamperone could rescue the expression of a folding mutant of the dopamine D4 receptor (M345), we propose that pipamperone acts as a pharmacological chaperone for correct receptor folding thereby resulting in an increased dopamine D4 receptor expression. This study describes a strong and inducible expression system for proteins, difficult to express in other heterologous expression systems. This study also demonstrates that pipamperone, an antipsychotic, acts as a pharmacological chaperone and by doing so, increases the expression level of the dopamine D4 receptor. The fact that ligands can also act as pharmacological chaperones is a fairly new additional element in the regulation of receptor expression levels with potential great impact in drug treatment.  相似文献   

14.
15.
A peripheral nervous system cell line RT4-B, established by Imada and Sueoka (Dev. Biol., 66:97-108, 1978), was shown to respond to serotonin [5-hydroxytryptamine (5-HT)] and catecholamines. 5-HT induced a small and transient increase in cytosolic free Ca2+ concentration ([Ca2+]i) in the RT4-B cells. The increase was effectively blocked by 5-HT2 receptor antagonists (spiperone, ritanserin and mianserin), but not by a 5-HT3 receptor antagonist (MDL72222), or a alpha 1-adrenergic receptor antagonist (prazosin), indicating that RT4-B cells express 5-HT2 receptors. On the other hand, catecholamines increased cyclic AMP production by RT4-B. The order of potency for stimulating cyclic AMP synthesis was isoproterenol greater than epinephrine much greater than norepinephrine much greater than dopamine, and the stimulation was effectively inhibited by the nonselective beta-adrenergic receptor antagonist propranolol, but not by the beta 1-adrenergic receptor antagonist atenolol, suggesting that RT4-B cells express beta 2-adrenergic receptors. The differentiating agent N6,2'-O-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) enhanced the 5-HT-induced [Ca2+]i increase, but not the catecholamine-induced cyclic AMP production. The increase in the 5-HT response paralleled the increase in the density of 5-HT2 receptors. n-Butyric acid (2 mM) and 8-bromoadenosine 3',5'-monophosphate (1 mM) also increased the 5-HT response, and the sum of these increases was nearly equal to that induced by dibutyryl-cAMP. These results indicate that RT4-B is a novel model cell line for the study of 5-HT2 and beta 2-adrenergic receptors and their second messenger responses and for the analysis of the mechanisms how 5-HT2 receptor gene expression is controlled.  相似文献   

16.
There is evidence that cannabinoids modulate the reuptake of some neurotransmitters in the central nervous system. In this study, we investigated the effects of the synthetic cannabinoid receptor agonist WIN55212-2, the endocannabinoid anandamide and the chemically related arachidonic acid on serotonin (5-HT) and dopamine (DA) uptake into rat neocortical synaptosomes. At micromolar concentrations, anandamide and arachidonic acid produced steep inhibition curves with Hill coefficients above unity. WIN55212-2 inhibited both DA and 5-HT uptake with Hill coefficients near unity, also within the micromolar range. The effect of WIN55212-2 was not mediated by cannabinoid receptors, since the CB1 receptor antagonist AM251 failed to diminish uptake inhibition by WIN55212-2 and since the Ki estimates of WIN55212-2 were outside the range of the dissociation constants of WIN55212-2 at both CB1 and CB2 receptors. A 100-fold higher concentration of DA, respectively 5-HT, did not induce a shift to the right of the WIN55212-2 concentration-inhibition curves, suggesting a carrier-independent mechanism. The Na(+)/K(+)-ATPase inhibitor ouabain concentration dependently inhibited 5-HT uptake. Possible drug effects on commercial Na(+)/K(+)-ATPase and synaptosomal ATP consumption were investigated using an ATP bioluminescence assay. Ouabain inhibited both commercial and synaptosomal Na(+)/K(+)-ATPase. WIN55212-2 had no effect on commercial Na(+)/K(+)-ATPase, but inhibited synaptosomal ATP consumption. Anandamide produced a sharp decrease in the activity of commercial Na(+)/K(+)-ATPase and on synaptosomal ATP consumption. Presence of ouabain significantly reduced the inhibitory effect of anandamide on synaptosomal ATP consumption, whereas the effect of WIN55212-2 remained unchanged. Our results show that cannabinoids and arachidonic acid inhibit DA and 5-HT uptake into rat neocortical synaptosomes. This effect is neither cannabinoid receptor-mediated nor due to competitive inhibition of membrane transporters, but is partly effected by a decreased Na(+)/K(+)-ATPase activity.  相似文献   

17.
Serotonin (5-HT) suppresses the photo-responsiveness of medulla bilateral neurons (MBNs) that are involved in the coupling mechanism of the bilaterally paired optic lobe circadian pacemakers in the cricket, Gryllus bimaculatus. We found that forskolin, a highly specific activator of adenylate cyclase, mimicked the effects of serotonin on the MBNs. This fact suggests the involvement of cyclic 3', 5'-adenosine monophosphate (cAMP) in mediating the action of serotonin. We therefore tested the effects of various 5-HT receptor agonists and antagonists that are coupled to adenylate cyclase to specify the receptor involved. Application of 8-OH-DPAT that has affinity for both 5-HT(1A) and 5-HT(7) receptors suppressed the photo-responsiveness, like forskolin. The inhibitory effect of 8-OH-DPAT was effectively blocked by clozapine, a high affinity 5-HT(7) receptor antagonists with a very low affinity for 5-HT(2). Ketanserin, a selective 5-HT(2) antagonist, and NAN-190, a 5-HT(1A) antagonist, did not block it. These results suggest that serotonergic suppression of the photo-responsiveness of the MBNs is mediated by 5-HT(7)-like receptor subtypes.  相似文献   

18.
Radioiodinated D-(+)-N1-ethyl-2-iodolysergic acid diethylamide ([125I]-EIL) has been evaluated as a ligand for in vitro and in vivo studies of cerebral serotonin 5-HT2 receptors. [125I]-EIL exhibited high affinity (KD = 209 pM) for 5-HT2 receptors with a high degree of specific binding (80-95%) in membranes from rat prefrontal cortex. The regional distribution of [125I]-EIL binding in vivo to seven areas of mouse brain correlated significantly (Rs = 0.93) with known densities of 5-HT2 receptors. In vivo specificity, defined by tissue to cerebellum radioactivity ratios, reached a maximum for frontal cortex at 6 hr (21.2) and persisted through 16 hr (8.8). Ketanserin, a 5-HT2 receptor antagonist, fully inhibited binding in a dose dependent fashion in all brain regions except cerebellum. By contrast, blockers for dopamine D2, alpha- or beta-adrenergic receptors did not significantly inhibit radioligand binding in any region. [125I]-EIL selectively labels 5-HT2 receptors in vivo with the highest specificity of any serotonergic ligand reported to date, indicating that [123I]-EIL should prove applicable to single photon emission computed tomography studies in living brain.  相似文献   

19.
Cultured endothelium derived from three fractions of human cerebral microvessels was used to characterize dopamine (DA) receptors linked to adenylate cyclase activity. DA or D1 agonist, (+/-)-SKF-82958 hydrobromide, stimulated endothelial cyclic AMP formation in a dose-dependent manner. The selective D1 antagonist, (+/-)SCH-23390, inhibited in a dose-dependent manner the production of cyclic AMP induced by DA. The affinity for the D1 receptor appeared to be greater in endothelium derived from large and small microvessels than from capillaries. Cholera toxin ADP-ribosylation of Gs proteins abolished the DA stimulatory effect on endothelial adenylate cyclase, whereas pertussis toxin ADP-ribosylation enhanced the DA-inducible formation, indicating the presence of both D1 and D2 receptors. Agonists of alpha 1-adrenergic receptors (phenylephrine, 6-fluoronorepinephrine) or serotonin (5-HT), which stimulated the production of cyclic AMP, had no additive effect on DA-stimulated cyclic AMP formation. Incubation of these agents with DA produced the same or lower levels of cyclic AMP as compared to that formed by DA alone. The effect of alpha 1-adrenergic agonists or 5-HT on DA production of cyclic AMP was partially prevented by the D2 antagonist, S(-)-sulpiride, or ketanserin (5-HT2 greater than alpha 1 greater than H1 antagonists), respectively. These findings represent the first demonstration of D1- (stimulatory) and D2- (inhibitory) receptors linked to adenylate cyclase in microvascular endothelium derived from human brain. The data also indicate that dopaminergic receptors can interact with either alpha 1-adrenergic or or 5-HT receptors in endothelium on the adenylate cyclase level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号