首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Koebmann B  Solem C  Jensen PR 《The FEBS journal》2005,272(9):2292-2303
In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon. We used metabolic control analysis to study the role of this organization. Earlier studies have shown that, at wild-type levels, LDH has no control over glycolysis and growth rate, but high negative control over formate production (C(Jformate)LDH=-1.3). We found that PFK and PK exert no control over glycolysis and growth rate at wild-type enzyme levels but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK exerts high positive control over formate (C(Jformate)PK=0.9-1.1) and acetate production (C(Jacetate)PK=0.8-1.0), whereas PFK exerts no control over these fluxes at increased expression. Decreased expression of the entire las operon resulted in a strong decrease in the growth rate and glycolytic flux; at 53% expression of the las operon glycolytic flux was reduced to 44% and the flux control coefficient increased towards 3. Increased las expression resulted in a slight decrease in the glycolytic flux. At wild-type levels, control was close to zero on both glycolysis and the pyruvate branches. The sum of control coefficients for the three enzymes individually was comparable with the control coefficient found for the entire operon; the strong positive control exerted by PK almost cancels out the negative control exerted by LDH on formate production. Our analysis suggests that coregulation of PFK and PK provides a very efficient way to regulate glycolysis, and coregulating PK and LDH allows cells to maintain homolactic fermentation during glycolysis regulation.  相似文献   

2.
The glycolytic enzyme phosphoglycerate enolase (PGE) catalyses the step from 2-phosphoglycerate to phosphoenolpyruvate in glycolysis. A control analysis of PGE on growth, glycolytic flux and product formation in Lactococcus lactis subsp. lactis IL1403 is presented. A library of strains with a modulated expression of PGE from 36 to 232% relative to wildtype level was constructed. Selected strains were studied with respect to growth, glycolytic flux and product formation in a chemically defined medium. On the basis of these data, flux control coefficients of PGE on the respective fluxes were calculated. At wildtype level, PGE was found to have no significant flux control on growth, glycolytic flux or product formation, but at 36% of PGE activity relative to wildtype, the flux control on the growth rate was estimated to be C(PGE)J(micro) approximately equal to 0.7, on the glycolytic flux C(PGE)J(g) approximately equal to 0.8, on lactate formation C(PGE)J(lactate) approximately equal to 1.3, on formate formation C(PGE)J(formate) approximately equal to 0.5 and on acetate formation C(PGE) J(acetate) approximately equal to 0.25. These flux control coefficients show that the metabolism of L. lactis subsp. lactis IL1403 becomes slightly more mixed acid at reduced PGE activities. Estimation of the relative turnover of PGE indicates that excess capacity of PGE in L. lactis IL1403 may be as low as twofold.  相似文献   

3.
The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps(+)) and in nonproducer strain MG5267 (Eps(-)) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by (31)P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps(+) strain than in the Eps(-) strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps(+) strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, alpha-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. (13)C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation.  相似文献   

4.
Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of V(max) over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis.  相似文献   

5.
A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h(-1)). Accumulation of H(2)O(2) in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H(2)O(2) accumulated only temporarily during the lag phase. H(2)O(2) is an inhibitor for several glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase being the most sensitive. Strain ATCC 19435 contained NADH oxidase (maximum specific rate under aerobic conditions, 426 nmol of NADH min(-1) mg of protein(-1)), which reduced oxygen to water, whereby superoxide was formed as a by-product. H(2)O(2) originated from the dismutation of superoxide by superoxide dismutase. Although H(2)O(2) was rapidly destroyed under high metabolic fluxes, neither NADH peroxidase nor any other enzymatic H(2)O(2)-reducing activity was detected. However, pyruvate, the end product of glycolysis, reacted nonenzymatically and rapidly with H(2)O(2) and hence was a potential alternative for scavenging of this oxygen metabolite intracellularly. Indeed, intracellular concentrations of up to 93 mM pyruvate were detected in aerobic cultures growing at high rates. It is hypothesized that self-generated pyruvate may serve to protect L. lactis strain ATCC 19435 from H(2)O(2).  相似文献   

6.
Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice. Levels of key regulatory metabolites, such as fructose-2,6-bisphosphate, matched the activity of metabolic pathways. Protein levels of glycolytic and gluconeogenic enzymes were not different. pAMPK protein levels increased with fasting and were higher in ShcKO versus WT mice. Therefore, Shc proteins play a role in shifting the metabolism from glucose oxidation to gluconeogenesis and lipid catabolism and should be considered as regulators of fuel selection. Fuel selection and utilization could play a critical role in healthy aging. Characterization of metabolic events in ShcKO mice would help to elucidate how metabolism is influenced by these proteins.  相似文献   

7.
We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by controlled expression of the well-characterized genes for phosphoglucomutase or glucokinase from Escherichia coli or Bacillus subtilis, respectively. The role of decreased metabolic flux was studied in L. lactis strains with decreased phosphofructokinase activities. The concomitant reduction of the activities of phosphofructokinase and other enzymes encoded by the las operon (lactate dehydrogenase and pyruvate kinase) resulted in significant changes in the concentrations of sugar-phosphates. In contrast, a >25-fold overproduction of glucokinase resulted in 7-fold-increased fructose-6-phosphate levels and 2-fold-reduced glucose-1-phosphate and glucose-6-phosphate levels. However, these increased sugar-phosphate concentrations did not affect the levels of sugar nucleotides. Finally, an approximately 100-fold overproduction of phosphoglucomutase resulted in 5-fold-increased levels of both UDP-glucose and UDP-galactose. While the increased concentrations of sugar-phosphates or sugar nucleotides did not significantly affect the production of exopolysaccharides, they demonstrate the metabolic flexibility of L. lactis.  相似文献   

8.
AIMS: The aim of this study was to isolate bacteriocin-producing lactic acid bacteria (LAB) from human intestine. METHODS AND RESULTS: A total of 111 LAB were isolated from human adult stool and screened for their bacteriocin production. Neutralized cell-free supernatants from Lactococcus lactis subsp. lactis MM19 and Pediococcus acidilactici MM33 showed antimicrobial activity. The antimicrobials in the supernatant from a culture of L. lactis inhibited Enterococcus faecium, various species of Lactobacillus and Staphylococcus aureus; while those in the supernatant from a culture of P. acidilactici inhibited Enterococcus spp., some lactobacilli and various serotypes of Listeria monocytogenes. The antimicrobial metabolites were heat-stable and were active over a pH range of 2-10. The antimicrobial activities of the supernatants of both bacteria were inhibited by many proteases but not by catalase. The plate overlay assay allowed an approximation of size between 3.5 and 6 kDa for both antimicrobial substances. CONCLUSIONS: As the antagonistic factor(s) produced by L. lactis MM19 and P. acidilactici MM33 were sensitive to proteolytic enzymes, it could be hypothesized that bacteriocins were involved in the inhibitory activities. Inhibition spectrum and biochemical analysis showed that these bacteria produced two distinct bacteriocins. SIGNIFICANCE AND IMPACT OF THE STUDY: We are the first to isolate bacteriocin-producing strains of Pediococcus and Lactococcus from human intestine. These strains might be useful for control of enteric pathogens.  相似文献   

9.
The fuels used by the hawkmoth Amphion floridensis to power flight are determined by nectar-feeding, with fed moths using primarily carbohydrate and unfed moths using primarily fat. To investigate the metabolic pathways underlying fuel-use flexibility in this species, we measured the maximal activities of several key metabolic enzymes in the flight muscle of fed and unfed individuals, for which metabolic rates and fuel utilization had been previously determined. Hexokinase (HK) and phosphofructokinase (PFK) occur at high activities and, during carbohydrate-fueled flight, are estimated to operate at fractional velocities comparable to those of exclusively carbohydrate-utilizing insects. Females exhibited higher glycolytic enzyme activities than did males, and males regulated PFK activity according to nectar feeding. Although beta-hydroxyacyl-CoA dehydrogenase (HOAD) was found at high activities, carnitine palmitoyl transferase (CPT) was not detectable, suggesting that fatty acids may be utilized via a carnitine-independent pathway during flight. Principal component analysis revealed a tendency for the activities of citrate synthase, HK, PFK, and HOAD to be positively correlated among individuals, as well as a lesser tendency for the activities of glycolytic vs. mitochondrial enzymes to be negatively correlated with each other. However, the principal components did not correlate with variation in either oxygen consumption rate or fuel use in vivo, suggesting that variation in enzyme concentration did not determine differences among individuals in metabolic performance during flight. J. Exp. Zool. 290:108-114, 2001.  相似文献   

10.
We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment.  相似文献   

11.
12.
The understanding of control of metabolic processes requires quantitative studies of the importance of the different enzymatic steps for the magnitude of metabolic fluxes and metabolite concentrations. An important element in such studies is the modulation of enzyme activities in small steps above and below the wild-type level. We review a genetic approach that is well suited for both Metabolic Optimization and Metabolic Control Analysis and studies on the importance of a number of glycolytic enzymes for metabolic fluxes in Lactococcus lactis. The glycolytic enzymes phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass production. With MG1363 growing in defined medium supplemented with glucose, the ATP demanding processes do not have a significant control on the glycolytic flux; it appears that glycolysis is running at maximal rate. It is likely that the flux control is distributed over many enzymes in L. lactis, but it cannot yet be excluded that one of the remaining glycolytic steps is a rate-limiting step for the glycolytic flux.  相似文献   

13.
Metabolic analysis of glutamate production by Corynebacterium glutamicum   总被引:1,自引:0,他引:1  
The dynamic behavior of the metabolism of Corynebacterium glutamicum during L-glutamic acid fermentation, was evaluated by quantitative analysis of the evolution of intracellular metabolites and key enzyme concentrations. Glutamate production was induced by an increase of the temperature and a final concentration of 80 g/l was attained. During the production phase, various other compounds, notably lactate, trehalose, and DHA were secreted to the medium. Intracellular metabolites analysis showed important variations of glycolytic intermediates and NADH, NAD coenzymes levels throughout the production phase. Two phenomena occur during the production phase which potentially provoke a decrease in the glutamate yield: Both the intracellular concentrations of glycolytic intermediates and the NADH/NAD ratio increase significantly during the period in which the overall metabolic rates decline. This correlates with the decrease in glutamate yield due in part to the production of lactate and also to the period of the fermentation in which growth no longer occurred.  相似文献   

14.
15.
A comparative expression proteome analysis was carried out by analyzing differential expression patterns of pulse-labelled proteins on two-dimensional gels under standard conditions and during purine nucleotide starvation, followed by mass spectrometric identification of regulated proteins. Based upon the expression patterns, three stimulons could be identified in Lactococcus lactis subsp. cremoris. The Psu proteins (purine starvation up-regulated) had increased synthesis during purine depletion in a purine auxotroph. Among these proteins were enzymes of the purine biosynthesis pathways (PurE, PurS, PurM, PurL), and enzymes involved in the generation of C1 units (GlyA, Fhs). C1 units are primarily required for purine biosynthesis. Upon analysis of the nucleotide sequence preceding the structural genes for these proteins in the L. lactis IL1403 genome sequence showed that all contained PurBox-Pribnov box structures resembling the PurR activated promoters for the purDEK and purCSQLF operons. Most, and possibly all members of the Psu stimulon are thus members of the PurR regulon. Five Psu proteins could not be identified. The second stimulon, the Psd stimulon (purine starvation decreased), whose members are down-regulated during purine depletion, contained proteins related to protein synthesis (PpsB, EF-TS, trigger factor), or to GTPases (FtsZ, EF-TS); or are involved in energy metabolism (GapB, CcpA). No common regulatory elements could be found for members of this stimulon. Two Psd proteins escaped identification. The last, Dcu (decoynine up-regulated), stimulon contained proteins whose synthesis escaped the severe general depression during inhibition of the GMP synthetase by decoynine. This regulon was comprised of mostly glycolytic enzymes (fructose bisphosphate aldolase, enolase, pyruvate kinase) and translation elongation factors (GTPases: EF-TU, EF-G). Two Dcu proteins could not be identified. Out of 28 proteins subjected to mass spectrometry, 19 could be readily identified despite the fact that only the genome sequence of a strain of L. lactis subsp. lactis was available. The two subspecies share about 85% sequence identity, comparable to the genetic distance between Escherichia coli and Salmonella typhimurium. A success rate of 68% indicates that it may be feasible to perform proteomics based upon genomic sequences of relatives outside the genus.  相似文献   

16.
17.
The metabolism of glucose was studied in Lactococcus lactis subsp. lactis CNRZ 125 by 13C NMR. The initial rate of glucose utilization was higher for exponential phase cells than for stationary phase cells [150 vs 85 nmol g (dry wt)-1 s-1]. 31P NMR was used to determine changes in glycolytic phosphorylated intermediates (fructose-1,6-diphosphate, dihydroxyacetone phosphate and phosphoglycerate). The internal pHs of L. lactis subsp. lactis CNRZ 141 and CNRZ 125 were also measured by 31P NMR as a function of the external pH during growth. When the external pH was 6·8, the internal pHs of strain CNRZ 141 and CNRZ 125 were similar, 7·4. After the external pH had decreased to 5·5, the internal pH of strain CNRZ 141 had declined by 0·6 unit, whereas that of strain CNRZ 125 had decreased by only 0·2 unit of pH.  相似文献   

18.
Glycolytic enzyme activity is significantly (P less than 0.05) induced between 24 and 48 hours of incubation in phytohemagglutinin-stimulated human lymphocytes. Nonstimulated cultured cells do not show this induction although these cells have an approximate daily doubling of thymidine incorporation. Maximal glycolytic enzyme activity is reached between 96 and 120 hours of culture in stimulated cells (3.5-fold increase) and maintained until at least 168 hours. There is no significant induction of the hexosemonophosphate shunt or the TCA cycle during seven-day transformation. Induction of glucose utilization becomes significantly (P less than 0.05) greater in stimulated as compared to nonstimulated cultures between 48 and 72 hours of culture and is significantly elevated for at least an additional 96 hours. There is a 17% increase in total protein in the stimulated cells after 24 hours of culture and higher levels of protein content are then maintained over the control. Thymidine incorporation is significantly greater in stimulated cells from 24-144 hours of culture but is not significantly different from the nonstimulated cells at 168 hours (P = 0.98) although glycolytic enzyme activity remains elevated in the stimulated cells. There is a greater enzyme induction of the latter phase of glycolysis during transformation and this phenomenon continues in extended cultures. Increases in glycolytic enzyme activity during mitogenesis appear to be an intrinsic phenomenon independent of cell proliferation and glucose transport. The mitogen-induced increase in the activity of the glycolytic enzymes accompanies blastogenesis and the sustained elevated activity of these enzymes to be related to the high metabolic rate of transformed cells.  相似文献   

19.
Studies of cellular responses to stress conditions such as heat, oxygen or starvation have revealed the existence of numerous specific or interactive response pathways. We previously observed in Lactococcus lactis that inactivation of the recA gene renders the lactococcal strain sensitive not only to DNA-damaging agents but also to oxygen and heat. To further examine the stress response pathways in L. lactis, we isolated thermoresistant insertional mutants (Trm) of the recA strain. Eighteen independent trm mutations were identified and characterized. We found that mutations map in only seven genes, implicated in purine metabolism (deoB, guaA and tktA), phosphate uptake (pstB and pstS), mRNA stability (pnpA) and in one uncharacterized gene (trmA). All the trm mutations, with the exception of trmA, confer multiple stress resistance to the cell. Some of the mutations confer improved heat stress resistance not only in the recA but also in the wild-type context. Our results reveal that cellular metabolic pathways are intimately related to stress response and that the flux of particular metabolites, notably guanine and phosphate, may be implicated in stress response in lactococci.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号