首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathways of glucose and pyruvate metabolism in Spirochaeta litoralis, a free-living, strictly anaerobic marine spirochete, were studied. Addition of 0.2 to 0.4 M NaCl (final concentration) to suspending buffers prevented cell lysis and was necessary for gas evolution from various substrates by cell suspensions. The organism fermented glucose mainly to ethanol, acetate, CO(2), and H(2). Determination of radioactivity in products formed from (14)C-labeled glucose and assays of enzymatic activities in cell extracts indicated that S. litoralis catabolized glucose via the Embden-Meyerhof pathway. A clostridial-type clastic reaction was utilized by the spirochete to degrade pyruvate to acetyl-coenzyme A, CO(2), and H(2). Formation of acetate from acetyl-coenzyme A was catalyzed by phosphotransacetylase and acetate kinase. Nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenases converted acetyl-coenzyme A to ethanol. A reversible hydrogenase activity was detected in cell extracts. S. litoralis cell extracts contained a rubredoxin similar in spectral properties to other bacterial rubredoxins.  相似文献   

2.
Summary Treponema denticola was grown in serum-containing media to which 14C-labelled compounds were added. Determinations of radioactivity in the products formed indicated that the organism fermented alanine, cysteine, glycine, serine, and glucose. Fermentation products included acetate, lactate, succinate, formate, pyruvate, ethanol, CO2, H2S, and NH3. The products formed from glucose constituted a small portion of the total products. Assays of enzymatic activities in cell extracts indicated that the organism degraded glucose via the Embden-Meyerhof pathway. T. denticola possessed a coenzyme A-dependent CO2-pyruvate exchange activity associated with a clostridial-type clastic system for pyruvate metabolism. Phosphotransacetylase and acetate kinase activities were present in cell extracts. Acetyl phosphate formation and benzyl viologen reduction were detected when cell extracts were incubated with pyruvate, serine or cysteine. The data indicate that T. denticola is an amino acid fermenter and that it possesses the enzymes needed for the fermentation of glucose. However, glucose does not serve as the primary substrate when the organism grows in media including both this carbohydrate and amino acids.  相似文献   

3.
Spirochaeta thermophila RI 19.B1 (DSM 6192) fermented glucose to lactate, acetate, CO2, and H2 with concomitant formation of cell material. The cell dry mass yield was 20.0 g/mol of glucose. From the fermentation balance data and knowledge of the fermentation pathway, a YATP of 9.22 g of dry mass per mol of ATP was calculated for pH-uncontrolled batch-culture growth on glucose in a mineral medium. Measurement of enzyme activities in glucose-grown cells revealed that glucose was taken up by a permease and then subjected to ATP-dependent phosphorylation by a hexokinase. Glucose-6-phosphate was further metabolized to pyruvate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase activity was PPi rather than ATP. This was also found for the type strain of S. thermophila, Z-1203 (DSM 6578). PPi was probably formed by pyrophosphoroclastic cleavage of ATP, with recovery of the resultant AMP by the activity of adenylate kinase. All other measured kinase activities utilized ATP as the phosphoryl donor. Pyruvate was further metabolized to acetyl coenzyme A with concomitant production of H2 and CO2 by pyruvate synthase. Lactate was also produced from pyruvate by a fructose-1,6-diphosphate-insensitive lactate dehydrogenase. Evidence was obtained for the transfer of reducing equivalents from the glycolytic pathway to hydrogenase to produce H2. No formate dehydrogenase or significant ethanol-producing enzyme activities were detected.  相似文献   

4.
A facultatively anaerobic spirochete isolated from a high-salinity pond grew optimally when 0.75 M NaCl, 0.2 M MgSO4, and 0.01 M CaCl2 were present in media containing yeast extract, peptone, and a carbohydrate. The organism failed to grow when any one of these three salts was omitted from the medium. Aerobically-grown colonies of the spirochete were red, whereas anaerobically-grown colonies showed no pigmentation. Non-pigmented mutants of the spirochete were isolated. The spirochete used carbohydrates, but not amino acids, as energy sources. Glucose was fermented to CO2, H2, ethanol, acetate, and a small amount of lactate. Determinations of radioactivity in products formed from glucose-1-14C and enzymatic assays indicated that glucose was dissimilated to pyruvate mainly via the Embden-Meyerhof pathway. Pyruvate was metabolized through a clostridial-type clastic reaction. Cells growing aerobically performed an incomplete oxidation of glucose mainly to CO2 and acetate. Comparison of aerobic and anaerobic growth yields indicated that oxidative phosphorylation occurred in cells growing aerobically. The guanine + cytosine content of the DNA of the spirochete was 62 moles %. It is proposed that the spirochete described herein be considered a new species and that it be named Spirochaeta halophila.  相似文献   

5.
Lactate Metabolism by Veillonella parvula   总被引:6,自引:2,他引:4       下载免费PDF全文
A strain of Veillonella parvula M4, which grows readily in lactate broth without a requirement for carbon dioxide, has been isolated from the oral cavity. Anaerobic, washed cells of this organism fermented sodium lactate to the following products (moles/100 moles of lactate): propionate, 66; acetate, 40; carbon dioxide, 40; and hydrogen, 14. Cells grew readily in tryptone-yeast extract broth with pyruvate, oxaloacetate, malate, and fumarate, but poorly with succinate. The fermentation of pyruvate, oxaloacetate, or lactate plus oxaloacetate by washed cells resulted in the formation of propionate and acetate in ratios significantly lower than those observed with lactate as the sole carbon source. This was primarily due to increased acetate production. Cell-free extracts were unable to degrade lactate but metabolized lactate in the presence of oxaloacetate, indicating the presence of malic-lactic transhydrogenase in this organism. Lactic dehydrogenase activity was not observed. Evidence is presented for oxaloacetate decarboxylase and malic dehydrogenase activities in extracts.  相似文献   

6.
Anaerobically grown Staphylococcus epidermidis fermented glucose with the production of lactate and trace amounts of acetate, formate and CO2. Isotopic and inhibitor studies, assays for key enzymes of different metabolic pathways, and fermentation balances, all indicated that glucose was metabolized principally via glycolysis and to a very limited extent by the hexose monophosphate oxidative pathway. Serine fermentation proceeded via deamination and dismutation yielding NH3 and equimolar amounts of lactate, acetate and CO2; small amounts of formate arose by the operation of pyruvate-formate lyase. Incorporation of 0.5% (w/v) glucose in the growth medium depressed serine metabolism by repressing the activities of serine dehydratase and pyruvate dehydrogenase but, conversely, enhanced the activities of phosphofructokinase and lactate dehydrogenase. Glucose-grown organisms at various stages of anaerobic batch growth showed an inverse relationship between the rates of fermentation of serine and glucose. L-Lactate dehydrogenase activity in crude extracts depended on fructose 1,6-bisphosphate, and fructose 1,6-bisphosphate aldolase was found to be a class I aldolase. Despite the presence of ribokinase, D-ribose-5-phosphate isomerase, transaldolase and transketolase, the organisms utilized ribose only after growth aerobically in basal medium, and then at a slow rate after an initial lag period.  相似文献   

7.
Summary A strictly anaerobic spirochete was isolated from a sample of marine mud. The organism possessed two axial fibrils entwined with the regularly coiled protoplasmic cylinder. An outer envelope or sheath enclosed both protoplasmic cylinder and axial fibrils. The spirochete grew in chemically defined media containing glucose, amino acids or NH4Cl, sulfide, NaCl, vitamins, coenzyme A, and in-organic salts. A reducing agent, such as sodium sulfide or l-cysteine, as well as exogenous supplements of biotin, niacin and coenzyme A were required for growth. Pantothenate replaced coenzyme A as an exogenous growth factor, but the resulting cell yields were low. The spirochete grew in media prepared with sea water, but not in fresh water media containing less than 0.05 M NaCl (optimum concentration 0.35 M). Both Na+ and Cl- were required. Carbohydrates served as fermentable substrates. Amino acids, sugar alcohols, tricarboxylic acid cycle intermediates, and other organic acids and alcohols were not fermented. Glucose was fermented to ethyl alcohol, acetate, CO2, H2, and small amounts of lactate, formate and pyruvate. The guanine + cytosine content of the DNA of the spirochete was 50.5 moles-% (buoyant density). It is proposed that the marine isolate be considered a new species and that it be named Spirochaeta litoralis.  相似文献   

8.
Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.  相似文献   

9.
Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.  相似文献   

10.
Streptococcus diacetilactis required acetate, contained acetate kinase and phosphotransacetylase, and incorporated both radioactive exogenous acetate and acetate from citrate into cell lipids. dl-alpha-Lipoic acid replaced acetate and was required for the oxidation of pyruvate. Stimulation of S. diacetilactis by citrate was found to depend on pyruvate oxidation. Resting cells of the organism produced acetate from 73% of the pyruvate they utilized. However, molar growth yields from glucose were not greater under aerobic compared to anaerobic conditions or when lipoic acid or citrate plus lipoic acid was used in the medium in place of acetate. Data indicate that the growth of S. diacetilactis is limited by the rate of acetyl-coenzyme A synthesis, that the rate of synthesis from pyruvate is higher than the rate from acetate, and that lack of acetyl-coenzyme A not required for growth limits the production of diacetyl and precludes the formation of adenosine triphosphate from acetyl-coenzyme A.  相似文献   

11.
Rogosa, M., (National Institutes of Health, Bethesda, Md.), M. I. Krichevsky, and F. S. Bishop. Truncated glycolytic system in Veillonella. J. Bacteriol. 90:164-171. 1965.-Intact Veillonella cells do not utilize carbohydrates for growth, nor are carbohydrates fermented. In cell extracts, there is no detectable glucokinase or fructokinase. Cell extracts do not degrade glucose or fructose unless supplemented with yeast hexokinase. Under these conditions, triose phosphates are formed in the presence of a hydrazine trap. When glucose-C(14) plus added hexokinase or fructose-1,6-diphosphate-C(14) was incubated with cell extracts, the production of CO(2), acetate, pyruvate, propionate, and lactate was detected. It is concluded that, except for a hexokinase, all the activities required for a glycolytic system are present.  相似文献   

12.
Cell extracts of Pseudomonas aeruginosa strain PAO were found to contain pyruvate carboxylase activity. Specific activities were minimal when cells were grown on Casamino Acids, acetate, or succinate, but were three- to fourfold higher when cells were grown in glucose, gluconate, glycerol, lactate, or pyruvate minimal media. The reaction in crude cell extracts and in partially purified preparations was dependent on pyruvate, adenosine 5'-triphosphate, and Mg(2+), but was not affected by either the presence or absence of acetyl coenzyme A. Activity was nearly totally inhibited by avidin and this inhibition was substantially blocked by free biotin in incubation mixtures. Cell extracts were shown to fix (14)CO(2) in a reaction that had these same characteristics. Eight pleiotropic, carbohydrate-negative mutant strains of the organism were isolated after nitrosoguanidine mutagenesis. Each mutant strain grew normally in acetate, succinate, and citrate minimal media but failed to utilize glucose, gluconate, 2-ketogluconate, mannitol, glycerol, lactate, and pyruvate as sole sources of carbon and energy. These strains were found by quantitative transductional analysis with phage F116 to form a single linkage group. Cell extracts of each mutant strain were either lacking or severely deficient in pyruvate carboxylase activity. Spontaneous revertants of five of the eight strains were isolated and found to recover simultaneously both pyruvate carboxylase activity and the ability to utilize each of the C(6) and C(3) compounds. A second linkage group of similar mutant strains that grew on the C(3) compounds was found to contain normal levels of pyruvate carboxylase activity, but each strain was deficient in an enzyme of the Entner-Doudoroff pathway.  相似文献   

13.
On the basis of enzyme activities detected in extracts of Selenomonas ruminantium HD4 grown in glucose-limited continuous culture, at a slow (0.11 h-1) and a fast (0.52 h-1) dilution rate, a pathway of glucose catabolism to lactate, acetate, succinate, and propionate was constructed. Glucose was catabolized to phosphoenol pyruvate (PEP) via the Emden-Meyerhoff-Parnas pathway. PEP was converted to either pyruvate (via pyruvate kinase) or oxalacetate (via PEP carboxykinase). Pyruvate was reduced to L-lactate via a NAD-dependent lactate dehydrogenase or oxidatively decarboxylated to acetyl coenzyme A (acetyl-CoA) and CO2 by pyruvate:ferredoxin oxidoreductase. Acetyl-CoA was apparently converted in a single enzymatic step to acetate and CoA, with concomitant formation of 1 molecule of ATP; since acetyl-phosphate was not an intermediate, the enzyme catalyzing this reaction was identified as acetate thiokinase. Oxalacetate was converted to succinate via the activities of malate dehydrogenase, fumarase and a membrane-bound fumarate reductase. Succinate was then excreted or decarboxylated to propionate via a membrane-bound methylmalonyl-CoA decarboxylase. Pyruvate kinase was inhibited by Pi and activated by fructose 1,6-bisphosphate. PEP carboxykinase activity was found to be 0.054 mumol min-1 mg of protein-1 at a dilution rate of 0.11 h-1 but could not be detected in extracts of cells grown at a dilution rate of 0.52 h-1. Several potential sites for energy conservation exist in S. ruminantium HD4, including pyruvate kinase, acetate thiokinase, PEP carboxykinase, fumarate reductase, and methylmalonyl-CoA decarboxylase. Possession of these five sites for energy conservation may explain the high yields reported here (56 to 78 mg of cells [dry weight] mol of glucose-1) for S. ruminantium HD4 grown in glucose-limited continuous culture.  相似文献   

14.
Anaerobically, Brochothrix thermosphacta fermented glucose primarily to l-lactate, acetate, formate, and ethanol. The ratio of these end products varied with growth conditions. Both the presence of acetate and formate and a pH below about 6 increased l-lactate production from glucose. Small amounts of butane-2,3-diol were also produced when the pH of the culture was low (相似文献   

15.
B Kamlage  B Gruhl    M Blaut 《Applied microbiology》1997,63(5):1732-1738
Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts.  相似文献   

16.
For six strains of Bifidobacterium bifidum (Lactobacillus bifidus), fermentation balances of glucose, lactose, galactose, mannitol, and xylose were determined. Products formed were acetate, l(+)-lactate, ethyl alcohol, and formate. l(+)-Lactate dehydrogenase of all strains studied was found to have an absolute requirement for fructose-1,6-diphosphate. The phosphoroclastic enzyme could not be demonstrated in cell-free extracts. Cell suspensions fermented pyruvate to equimolar amounts of acetate and formate. Alcohol dehydrogenase was shown in cell-free extracts. Possible explanations have been suggested for the differences in fermentation balances found for different strains and carbon sources. By enzyme determinations, it was shown that bifidobacteria convert mannitol to fructose-6-phosphate by an inducible polyol dehydrogenase and fructokinase. For one strain of B. bifidum, molar growth yields of glucose, lactose, galactose, and mannitol were determined. The mean value of Y (ATP), calculated from molar growth yields and fermentation balances, was 11.3.  相似文献   

17.
Dissimilatory sulphate reduction with acetate as electron donor   总被引:4,自引:0,他引:4  
Acetate oxidation by sulphate was studied with desulfobacter postgatei. Cell extracts of the organism were found to contain high activities of the following enzymes: citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and pyruvate synthase. It is concluded that acetate oxidation with sulphate in D. postgatei proceeds via the citric acid cycle with the synthesis of pyruvate from acetyl CoA and CO2 as an anaplerotic reaction. The apparent Ks for acetate oxidation by D. postgatei as determined in vivo was near 0.2 mM. The apparent Ks for acetate fermentation to methane and CO2 by methanosarcina barkeri was 3 mM. The significantly lower ks for acetate of the sulphate reducer explains why methane formation from acetate in natural habitats is apparently inhibited by sulphate.  相似文献   

18.
Cell suspensions of Bacteroides fragilis were allowed to ferment glucose and lactate labeled with (14)C in different positions. The fermentation products, propionate and acetate, were isolated, and the distribution of radioactivity was determined. An analysis of key enzymes of possible pathways was also made. The results of the labeling experiments showed that: (i) B. fragilis ferments glucose via the Embden-Meyerhof pathway; and (ii) there was a randomization of carbons 1, 2, and 6 of glucose during conversion to propionate, which is in accordance with propionate formation via fumarate and succinate. The enzymes 6-phosphofrucktokinase (pyrophosphate-dependent), fructose-1,6-diphosphate aldolase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, and methylmalonyl-coenzyme A mutase could be demonstrated in cell extracts. Their presence supported the labeling results and suggested that propionate is formed from succinate via succinyl-, methylmalonyl-, and propionyl-coenzyme A. From the results it also is clear that CO(2) is necessary for growth because it is needed for the formation of C4 acids. There was also a randomization of carbons 1, 2, and 6 of glucose during conversion to acetate, which indicated that pyruvate kinase played a minor role in pyruvate formation from phosphoenolpyruvate. Phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase, and malic enzyme (nicotinamide adenine dinucleotide phosphate-dependent) were present in cell extracts of B. fragilis, and the results of the labeling experiments agreed with pyruvate synthesis via oxaloacetate and malate if these acids are in equilibrium with fumarate. The conversion of [2-(14)C]- and [3-(14)C]lactate to acetate was not associated with a randomization of radioactivity.  相似文献   

19.
A detailed study of the glucose fermentation pathway and the modulation of catabolic oxidoreductase activities by energy sources (i.e., glucose versus lactate or fumarate) in Propionispira arboris was performed. 14C radiotracer data show the CO2 produced from pyruvate oxidation comes exclusively from the C-3 and C-4 positions of glucose. Significant specific activities of glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase were detected, which substantiates the utilization of the Embden-Meyerhoff-Parnas path for glucose metabolism. The methylmalonyl coenzyme A pathway for pyruvate reduction to propionate was established by detection of significant activities (greater than 16 nmol/min per mg of protein) of methylmalonyl coenzyme A transcarboxylase, malate dehydrogenase, and fumarate reductase in cell-free extracts and by 13C nuclear magnetic resonance spectroscopic demonstration of randomization of label from [2-13C]pyruvate into positions 2 and 3 of propionate. The specific activity of pyruvate-ferredoxin oxidoreductase, malate dehydrogenase, fumarate reductase, and transcarboxylase varied significantly in cells grown on different energy sources. D-Lactate dehydrogenase (non-NADH linked) was present in cells of P. arboris grown on lactate but not in cells grown on glucose or fumarate. These results indicate that growth substrates regulate synthesis of enzymes specific for the methylmalonyl coenzyme A path and initial substrate transformation.  相似文献   

20.
Crude extracts of both vegetative cells and glycerol-induced microcysts of Myxococcus xanthus contained the following enzyme activities: phosphofructokinase, phosphoglucoisomerase, fructose-1,6-diphosphatase, fructosediphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphopyruvate carboxylase, citrate synthase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, and uridine diphosphate glucose pyrophosphorylase. With the exception of isocitrate dehydrogenase, which was present at a fivefold higher concentration in microcysts, all activities in extracts from both types of cells were essentially equal. Hexokinase and pyruvate kinase could not be detected in extracts from either type of cell. Microcysts metabolized acetate at a lower rate than did vegetative cells. Most of this decrease was reflected in a substantial decrease in ability of microcysts to oxidize acetate to CO(2). In addition, microcysts and vegetative cells showed a different distribution of (14)C-label from incorporated acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号