首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons and a substantial decrease in the neurotransmitter dopamine in the nigro-striatal region of the brain. Increased markers of oxidative stress, activated microglias and elevated levels of pro-inflammatory cytokines have been identified in the brains of patients with PD. Although the precise mechanism of loss of neurons in PD remains unclear, these findings suggest that microglial activation may contribute directly to loss of dopaminergic neurons in PD patients. In the present study, we tested the hypothesis that activated microglia induces nitric oxide-dependent oxidative stress which subsequently causes death of dopaminergic neuronal cells in culture. We employed lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) as a reactive microglial model and SH-SY5Y cells as a model for human dopaminergic neurons. LPS stimulation of macrophages led to increased production of nitric oxide in a time and dose dependent manner as well as subsequent generation of other reactive nitrogen species such as peroxynitrite anions. In co-culture conditions, reactive macrophages stimulated SH-SY5Y cell death characterized by increased peroxynitrite concentrations and nitration of alpha-synuclein within SH-SY5Y cells. Importantly 1400W, an inhibitor of the inducible nitric oxide synthase provided protection from cell death via decreasing the levels of nitrated alpha-synuclein. These results suggest that reactive microglias could induce oxidative stress in dopaminergic neurons and such oxidative stress may finally lead to nitration of alpha-synuclein and death of dopaminergic neurons in PD.  相似文献   

2.
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specifi city, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrAwith α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degen- eration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.  相似文献   

3.
Alpha-synuclein is a small protein implicated in the pathophysiology of Parkinson's disease (PD). We have investigated the mechanism of cleavage of alpha-synuclein by the 20S proteasome. Alpha-synuclein interacts with the C8 (α7) subunit of the proteasome. The N-terminal part of alpha-synuclein (amino acids 1–60) is essential for its proteasomal degradation and analysis of peptides released from proteasomal digestion allows concluding that initial cleavages occur within the N-terminal region of the molecule. Aggregated alpha-synucleins are also degraded by the proteasome with a reduced rate, likely due to Met oxidation. In fact, mild oxidation of alpha-synuclein with H2O2 resulted in the inhibition of its degradation by the proteasome, mainly due to oxidation of Met 1 and 5 of alpha-synuclein. The inhibition was reversed by treatment of the oxidized protein with methionine sulfoxide reductases (MsrA plus MsrB). Similarly, treatment with H2O2 of N2A cells transfected with alpha-synuclein resulted in the inhibition of its degradation that was also reverted by co-transfection of MsrA plus MsrB. These results clearly indicate that oxidative stress, a common feature of PD and other synucleinopathies, promotes a RedOx change in the proteostasis of alpha-synuclein due to Met oxidation and reduced proteasomal degradation; compromised reversion of those oxidative changes would result in the accumulation of oxidative damaged alpha-synuclein likely contributing to the pathogenesis of PD.  相似文献   

4.
Proteins are modified by reactive oxygen species, and oxidation of specific amino acid residues can impair their biological functions, leading to an alteration in cellular homeostasis. Oxidized proteins can be eliminated through either degradation or repair. Repair is limited to the reversion of a few modifications such as the reduction of methionine oxidation by the methionine sulfoxide reductase (Msr) system. However, accumulation of oxidized proteins occurs during aging, replicative senescence, or neurological disorders or after an oxidative stress, while Msr activity is impaired. In order to more precisely analyze the relationship between oxidative stress, protein oxidative damage, and MsrA, we stably overexpressed MsrA full-length cDNA in SV40 T antigen-immortalized WI-38 human fibroblasts. We report here that MsrA-overexpressing cells are more resistant than control cells to hydrogen peroxide-induced oxidative stress, but not to ultraviolet A irradiation. This MsrA-mediated resistance is accompanied by a decrease in intracellular reactive oxygen species and is partially abolished when cells are cultivated at suboptimal concentration of methionine. These results indicate that MsrA may play an important role in cellular defenses against oxidative stress, by catalytic removal of oxidant through the reduction of methionine sulfoxide, and in protection against death by limiting, at least in part, the accumulation of oxidative damage to proteins.  相似文献   

5.
The oxidized protein repair methionine sulfoxide reductase (Msr) system has been implicated in aging, in longevity, and in the protection against oxidative stress. This system is made of two different enzymes (MsrA and MsrB) that catalyze the reduction of the two diastereoisomers S- and R-methionine sulfoxide back to methionine within proteins, respectively. Due to its role in cellular protection against oxidative stress that is believed to originate from its reactive oxygen species scavenging ability in combination with exposed methionine at the surface of proteins, the susceptibility of MsrA to hydrogen-peroxide-mediated oxidative inactivation has been analyzed. This study is particularly relevant to the oxidized protein repair function of MsrA in both fighting against oxidized protein formation and being exposed to oxidative stress situations. The enzymatic properties of MsrA indeed rely on the activation of the catalytic cysteine to the thiolate anion form that is potentially susceptible to oxidation by hydrogen peroxide. The residual activity and the redox status of the catalytic cysteine were monitored before and after treatment. These experiments showed that the enzyme is only inactivated by high doses of hydrogen peroxide. Although no significant structural modification was detected by near- and far-UV circular dichroism, the conformational stability of oxidized MsrA was decreased as compared to that of native MsrA, making it more prone to degradation by the 20S proteasome. Decreased conformational stability of oxidized MsrA may therefore be considered as a key factor for determining its increased susceptibility to degradation by the proteasome, hence avoiding its intracellular accumulation upon oxidative stress.  相似文献   

6.
Peptide methionine sulfoxide reductase (MsrA) repairs oxidative damage to methionine residues arising from reactive oxygen species and reactive nitrogen intermediates. MsrA activity is found in a wide variety of organisms, and it is implicated as one of the primary defenses against oxidative stress. Disruption of the gene encoding MsrA in several pathogenic bacteria responsible for infections in humans results in the loss of their ability to colonize host cells. Here, we present the X-ray crystal structure of MsrA from the pathogenic bacterium Mycobacterium tuberculosis refined to 1.5 A resolution. In contrast to the three catalytic cysteine residues found in previously characterized MsrA structures, M. tuberculosis MsrA represents a class containing only two functional cysteine residues. The structure reveals a methionine residue of one MsrA molecule bound at the active site of a neighboring molecule in the crystal lattice and thus serves as an excellent model for protein-bound methionine sulfoxide recognition and repair.  相似文献   

7.

Background  

Methionine Sulfoxide Reductase A (MsrA), an enzyme in the Msr gene family, is important in the cellular anti-oxidative stress defense mechanism. It acts by reducing the oxidized methionine sulfoxide in proteins back to sulfide and by reducing the cellular level of reactive oxygen species. MsrA, the only enzyme in the Msr gene family that can reduce the S-form epimers of methionine sulfoxide, has been located in different cellular compartments including mitochondria, cytosol and nuclei of various cell lines.  相似文献   

8.
Reactive oxygen species (ROS) are critical in tissue responses to ischemia-reperfusion. The enzyme methionine sulfoxide reductase-A (MsrA) is capable of protecting cells against oxidative damage by reversing damage to proteins caused by methionine oxidation or by decreasing ROS through a scavenger mechanism. The current study employed adenovirus mediated over-expression of MsrA in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation in this tissue. Cells were transduced with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation. Apoptotic cell death was decreased by greater than 45% in cells over-expressing MsrA relative to cells transduced with a control virus. Likewise total cell death as determined by levels of LDH release was dramatically decreased by MsrA over-expression. These observations indicate that MsrA is protective against hypoxia/reoxygenation stress in cardiac myocytes and point to MsrA as an important therapeutic target for ischemic heart disease.  相似文献   

9.
Establishment of a Parkinson's disease (PD) neuron model was attempted with mouse embryonic stem (ES) cells. ES cell lines over-expressing mouse nuclear receptor-related 1 (Nurr1), together with human wild-type and alanine 30 --> proline (A30P) and alanine 53 --> threonine (A53T) mutant alpha-synuclein were established and subjected to differentiation into dopaminergic neurons. The ES cell-derived dopaminergic neurons expressing wild-type or mutant alpha-synuclein exhibited the fundamental characteristics consistent with dopaminergic neurons in the substantia nigra. The ES cell-derived PD model neurons exhibited increased susceptibility to oxidative stress, proteasome inhibition, and mitochondrial inhibition. Cell viability of PD model neurons and the control neurons was similar until 28 days after differentiation. Nonetheless, after that time, PD model neurons gradually began to undergo neuronal death over the course of 1 month, showing cytoplasmic aggregate formation and an increase of insoluble alpha-synuclein protein. Such delayed neuronal death was observed in a mutant alpha-synuclein protein level-dependent manner, which was slightly inhibited by a c-jun N-terminal kinase inhibitor and a caspase inhibitor. Such cell death was not observed when the same ES cell lines were differentiated into oligodendrocytes. The ES cell-derived PD model neurons are considered as prospective candidates for a new prototype modelling PD that would allow better investigation of the underlying neurodegenerative pathophysiology.  相似文献   

10.
We investigated the role of methionine sulfoxide reductases (Msrs) in oxidant-stress-induced cell death in retinal pigmented epithelial (RPE) cells. In RPE cells exposed to varying doses of H(2)O(2), gene expression of MsrA and hCBS-1 (the human analog of MsrB2) increased in a dose-dependent and time-dependent manner with maximal increase with 150 microM H(2)O(2) in 24h. H(2)O(2) treatment resulted in the generation of reactive oxygen species and activation of caspase 3. Confocal microscopic and protein analysis showed an increase in MsrA expression in cytosol and mitochondria. Silencing of MsrA resulted in caspase 3 induction and accentuated cell death from H(2)O(2). Focal, strong immunoreactivity for MsrA was observed in sub-RPE macular drusen from patients with age-related macular degeneration. In summary, our data show that MsrA and hCBS-1 are up-regulated in oxidative stress to counteract injury to RPE.  相似文献   

11.
Oxidative stress, inflammation and alpha-synuclein overexpression confer risk for development of alpha-synucleinopathies-neurodegenerative diseases that include Parkinson disease and Lewy body dementia. Dopaminergic neurons undergo degeneration in these diseases and are particularly susceptible to oxidative stress because dopamine metabolism itself creates reactive oxygen species. Intraneuronal deposition of alpha-synuclein as amyloid fibrils or Lewy bodies is the hallmark of these diseases. Herein, we demonstrate that concentrations of oxidative cholesterol metabolites derived from reactive oxygen species are elevated in the cortices of individuals with Lewy body dementia relative to those of age-matched controls, and we show that these metabolites accelerate alpha-synuclein aggregation in vitro. The increase in the production of these cytotoxic cholesterol metabolites is also observed in a dopaminergic cell line that overexpresses alpha-synuclein. By extension, these data lead to the hypothesis that oxidative stress produces cholesterol aldehydes that enable alpha-synuclein aggregation, leading to a pathologic cycle.  相似文献   

12.
Reactive oxygen and nitrogen intermediates can cause damage to many cellular components and have been implicated in a number of diseases. Cells have developed a variety of mechanisms to destroy these reactive molecules or repair the damage once it occurs. In proteins one of the amino acids most easily oxidized is methionine, which is converted to methionine sulfoxide. An enzyme, peptide methionine sulfoxide reductase (MsrA), catalyzes the reduction of methionine sulfoxide in proteins back to methionine. There is growing evidence that MsrA plays an important role in protecting cells against oxidative damage. This paper reviews the biochemical properties and biological role of MsrA.  相似文献   

13.
One hypothesis for the etiology of Parkinson's disease (PD) is that the formation of proteinaceous inclusion, which is mainly composed of alpha-synuclein, may contribute to the selective loss of dopaminergic neurons. To further explore the role of alpha-synuclein in neurodegeneration of PD, we examined the possible effects of aggregated alpha-synuclein on the intracellular redox state, dopamine level, and cell death of SK-N-SH cells. Our present studies show that alpha-synuclein aggregation gives rise to both elevated intracellular oxidative state and dopamine level in SK-N-SH cells. Moreover, alpha-synuclein aggregation results in a higher ratio of apoptosis population (55.8%+/-SEM) in cells overexpressing alpha-synuclein aggregation, compared to their normal control groups (8.0%+/-SEM). In contrast, coexpression of hsp70 with alpha-synuclein suppresses the oxidative state shift, restores the normal dopamine levels and blocks neuron cell loss. Therefore, our data provided one possible mechanism by which the alpha-synuclein aggregation may lead to the neurodegeneration in PD via regulating the level of cytoplasmic dopamine and then disturbing the intracellular redox homeostasis. On the other hand, hsp70 can mitigate the degenerative effect conferred by alpha-synuclein, acting as a protective factor in treatment of PD.  相似文献   

14.
15.
Methionine sulfoxide reductase A (MsrA), a member of the Msr gene family, can reduce methionine sulfoxide residues in proteins formed by oxidation of methionine by reactive oxygen species (ROS). Msr is an important protein repair system which can also function to scavenge ROS. Our studies have confirmed the expression of MsrA in mouse embryonic stem cells (ESCs) in culture conditions. A cytosol‐located and mitochondria‐enriched expression pattern has been observed in these cells. To confirm the protective function of MsrA in ESCs against oxidative stress, a siRNA approach has been used to knockdown MsrA expression in ES cells which showed less resistance than control cells to hydrogen peroxide treatment. Overexpression of MsrA gene products in ES cells showed improved survivability of these cells to hydrogen peroxide treatment. Our results indicate that MsrA plays an important role in cellular defenses against oxidative stress in ESCs. Msr genes may provide a new target in stem cells to increase their survivability during the therapeutic applications. J. Cell. Biochem. 111: 94–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The cause of the neurodegenerative process in Parkinson's disease (PD) remains unclear, but evidence suggests that failure of the ubiquitin-proteasome system may play a major role in the pathogenesis of the disease. Iron is believed to be a key contributor to PD pathology by inducing aggregation of alpha-synuclein and by generating oxidative stress. Our present studies have shown that micro-injection of the proteasome inhibitor lactacystin into the substantia nigra (SN) of C57BL/6 mice causes significant loss of dopaminergic cells and induces intracellular inclusion body formation. We have also found that co-injection of the iron chelator desferrioxamine not only attenuates the lactacystin-induced dopamine neuron loss, but also reduces the presence of ubiquitin-positive intracellular inclusions in the SN, whereas use of iron-deficient diet has no such protective effects. These results may support that iron plays a key role in proteasome inhibitor-induced nigral pathology and that reducing iron reactivity may prevent dopaminergic neuron degeneration and reduce abnormal protein aggregation.  相似文献   

17.
According to the mitochondrial theory of aging, mitochondrial dysfunction increases intracellular reactive oxidative species production, leading to the oxidation of macromolecules and ultimately to cell death. In this study, we investigated the role of the mitochondrial methionine sulfoxide reductase B2 in the protection against oxidative stress. We report, for the first time, that overexpression of methionine sulfoxide reductase B2 in mitochondria of acute T-lymphoblastic leukemia MOLT-4 cell line, in which methionine sulfoxide reductase A is missing, markedly protects against hydrogen peroxide-induced oxidative stress by scavenging reactive oxygen species. The addition of hydrogen peroxide provoked a time-gradual increase of intracellular reactive oxygen species, leading to a loss in mitochondrial membrane potential and to protein carbonyl accumulation, whereas in methionine sulfoxide reductase B2-overexpressing cells, intracellular reactive oxygen species and protein oxidation remained low with the mitochondrial membrane potential highly maintained. Moreover, in these cells, delayed apoptosis was shown by a decrease in the cleavage of the apoptotic marker poly(ADP-ribose) polymerase-1 and by the lower percentage of Annexin-V-positive cells in the late and early apoptotic stages. We also provide evidence for the protective mechanism of methionine sulfoxide reductase B2 against protein oxidative damages. Our results emphasize that upon oxidative stress, the overexpression of methionine sulfoxide reductase B2 leads to the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance.  相似文献   

18.
Xu J  Kao SY  Lee FJ  Song W  Jin LW  Yankner BA 《Nature medicine》2002,8(6):600-606
The mechanism by which dopaminergic neurons are selectively lost in Parkinson disease (PD) is unknown. Here we show that accumulation of alpha-synuclein in cultured human dopaminergic neurons results in apoptosis that requires endogenous dopamine production and is mediated by reactive oxygen species. In contrast, alpha-synuclein is not toxic in non-dopaminergic human cortical neurons, but rather exhibits neuroprotective activity. Dopamine-dependent neurotoxicity is mediated by 54 83-kD soluble protein complexes that contain alpha-synuclein and 14-3-3 protein, which are elevated selectively in the substantia nigra in PD. Thus, accumulation of soluble alpha-synuclein protein complexes can render endogenous dopamine toxic, suggesting a potential mechanism for the selectivity of neuronal loss in PD.  相似文献   

19.
It is known that reactive oxygen species can oxidize methionine residues in proteins in a non-stereospecific manner, and cells have mechanisms to reverse this damage. MsrA and MsrB are members of the methionine sulfoxide family of enzymes that specifically reduce the S and R forms, respectively, of methionine sulfoxide in proteins. However, in Escherichia coli the level of MsrB activity is very low which suggested that there may be other enzymes capable of reducing the R epimer of methionine sulfoxide in proteins. Employing a msrA/B double mutant, a new peptide methionine sulfoxide reductase activity has been found associated with membrane vesicles from E. coli. Both the R and S forms of N-acetylmethionine sulfoxide, D-ala-met(o)-enkephalin and methionine sulfoxide, are reduced by this membrane associated activity. The reaction requires NADPH and may explain, in part, how the R form of methionine sulfoxide in proteins is reduced in E. coli. In addition, a new soluble Msr activity was also detected in the soluble extracts of the double mutant that specifically reduces the S epimer of met(o) in proteins.  相似文献   

20.
Methionine can be oxidized by reactive oxygen species to a mixture of two diastereomers, methionine-S-sulfoxide and methionine-R-sulfoxide. Both free amino acid and protein-based forms of methionine-S-sulfoxide are stereospecifically reduced by MsrA, whereas the reduction of methionine-R-sulfoxide requires two enzymes, MsrB and fRMsr, which act on its protein-based and free amino acid forms, respectively. However, mammals lack fRMsr and are characterized by deficiency in the reduction of free methionine-R-sulfoxide. The biological significance of such biased reduction of methionine sulfoxide has not been fully explored. MsrA and MsrB activities decrease during aging, leading to accumulation of protein-based and free amino acid forms of methionine sulfoxide. Since methionine is an indispensible amino acid in human nutrition and a key metabolite in sulfur, methylation, and transsulfuration pathways, the consequences of accumulation of its oxidized forms require further studies. Finally, in addition to methionine, methylsulfinyl groups are present in various drugs and natural compounds, and their differential reduction by Msrs may have important therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号