首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth response of a nitrogen fixing cyanobacterium, Anabaena flos-aquae (Lyng) Bréb., to sodium and nitrate was examined in batch culture under controlled laboratory conditions. Sodium (range 0-12 mg Na+· L-1) enhanced growth of the cyanobacterium under nitrate-sufficient (5.7 mg NO3-N · L-1) but not nitrate-limited (0.49 mg NO3- N · L-1) conditions. The magnitude of the growth response was related to the nutritional history of the culture. No significant effect of sodium on nitrate utilization was observed. The increase in ambient sodium levels in many lakes may provide a competitive advantage to cyanobacteria.  相似文献   

2.
The kinetics of population growth and death were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown at light intensities ranging from limitation to photoinhibition (5 W·m−2 to 160 W·m−2) in a nutrient-replete turbidostat. Steady-state growth rate (μ, or dilution rate, D) increased with light intensity from 0.44·day−1 at a light intensity of 5 W·m−2 to 0.99·day−1 at 20 W·m−2 and started to decrease above about 22 W·m−2, reaching 0.56·day−1 at 160 W·m−2. The Haldane function of enzyme inhibition fit the growth data poorly, largely because of the unusually narrow range of saturation intensity. However, it produced a good fit (P < 0.001) for growth under photoinhibition. Anabaena flos-aquae died at different specific death rates (γ) below and above the saturation intensity. When calculated as the slope of a vx−1 and D−1 plot, where vx and D are cell viability (or live cell fraction) and dilution rate, respectively; γ was 0.047·day−1 in the range of light limitation and 0.103·day−1 under photoinhibition. Live vegetative cells and heterocysts, either in numbers or as a percentage of the total cells, showed a peak at the saturation intensity and decreased at lower and higher intensities. The ratio of live heterocysts to live vegetative cells increased with intensity when light was limiting but decreased when light was supersaturating. In cells growing at the same growth rate, the ratio was significantly lower under light inhibition than under subsaturation and the cell N:C ratio was also lower under inhibition. The steady-state rate of dissolved organic carbon (DOC) production increased with light intensity. However, its production as a percentage of the total C fixation was lowest at the optimum intensity and increased as the irradiance decreased or increased. The rate and percentage was significantly higher under photoinhibition than limitation in cells growing at the same growth rate. About 22% of the total fixed carbon was released as DOC at the highest light intensity. No correlation was found between the number of dead cells and DOC.  相似文献   

3.
P accumulation and metabolic pathway in N2-fixing Anabaena flos-aquae (Lyngb.) Bréb were investigated in P-sufficient (20 μMP) and P-limited (2 μMP) turbidostats in combined N-free medium. The cyanobacterium grew at its maximum rate (μmax, 1.13 d?1) at the high P concentration and at 65% of μmax under P limitation, with total cell P concentrations (QP) at steady states of 12.0 and 5.2 fmol·cell?1, respectively. At steady state, polyphosphates (PPi) accounted for only 3% of QP (0.4 fmol·cell?1) in P-rich cells. Its concentration in P-limited cells was 5.8% (0.3 fmol·cell?1). On the other hand, sugar P was very high at 22% of QP in P-rich cells and was undetectable in P-limited cells. Pulse chase experiments with 32P showed that P-rich cells initially incorporated the labeled P into the acid-soluble PPi fraction within the first few minutes and to a lesser extent into nucleotide P. Radioactivity in the PPi then declined rapidly with concomitant increases in sugar P and nucleotide P fractions. In contrast, in P-limited cells, no radiolabel was detected in acid-soluble PPi, and 32P was initially incorporated into nucleotide P, sugar P, and ortho P fractions. The latter two fractions then subsequently declined. Therefore, under N2-fixing conditions the cyanobacteria appeared to store P as sugar P and also utilize P through different pathways under P-rich and -limited conditions. When nitrate was supplied as the N source under P-sufficient conditions, PPi accounted for about 15% of steady-state QP, but no sugar P was detected. Therefore, the same organism stored P in different cell P fractions depending on its N sources.  相似文献   

4.
The growth-related inhibitory effects of mercuric chloride (MC), methylmercuric chloride (MMC) and phenylmercuric acetate (PMA) (each at 1, 10, 10,2 103 ppb) were measured in Anabaena flos-aquae (Lyng.) Bréb. and Anacystis nidulans (Richt.) Drouet & Daily. Optical density changes of control cultures compared against those of experimental cultures showed that MC was the least inhibitory of the compounds. MMC. was the most inhibitory, producing statistically significant inhibition at a concentration as low as I ppb in Anabaena. PMA was more inhibitory than MC but less than MMC. Effects caused by the mercury compounds included bleaching of individual cells, cell size changes and destruction of whole cells; the degree and extent of these effects depended on the compound and its concentration in the nutrient medium. The high sensitivities of the algae tested suggested the possibility of using them as test organisms in bioassays for mercury.  相似文献   

5.
The production and extracellular release of cyclic adenosine 3′: 5′-monophosphate (cAMP) by the blue-green alga Anabaena flos-aquae (Lyngb.) Breb. varied greatly within and between active growth phase and stationary phase and under differing nutrient regimes. Enhanced cellular cAMP production was found in actively growing Anabaena inoculated into media deficient in nitrate or phosphate, or into fresh media containing non-limiting nutrient concentrations. In stationary phase Anabaena, but not actively growing cells, the concentrations of intra-cellular cAMP present in cells grown under a variety of nutrient regimes could be significantly correlated to [14C]-bicarbonate uptake by an exponential relationship.  相似文献   

6.
Cultures of Anabaena flos-aquae (Lyng.) Breb. Were used to determine changes in nitrogenase activity (acetylene reduction) after external concentrations of phosphorus were lowered. Two days following immersion in phosphorus-free medium, nitrogenase activity (NA) had doubled and required 8 days to return to time zero levels. Subsequent long-term experiments showed that concentrations of soluble reactive phosphorus (SRP) released from the algae transferred into the –P medium reached maximum levels by day 3 and returned to initial low values by days 7–10. NA was always highest during this SRP release-reassimilation phase but steadily decreased after reassimilation was complete. Day 56 NA was 5–14% of initial activity. The data support the hypothesis that heterocyst and vegetative cell ATP pools are discrete and suggest that the short-term effects of phosphorus removal as an aquatic restoration technique need further study.  相似文献   

7.
Starting material for the tissue cultures was the meristematic basal zone of the blade. Pieces treated 30–60 sec in hypochlorite solution were rinsed and placed on agar plates made from the artificial seawater ASP6 F2 solidified with 6 g agar l?1. After 6 weeks colorless callus-like tissue grew out from some pieces. Treatment with activated charcoal removed some inhibiting substances from the agar medium as numbers of callus developing pieces increased on such plates. A combination of 10?5 M NAA and 5 · 10?7 M kinetin gave a yellow-brown tissue. A differentiation in the tissue from L. hyperborea was observed as well as the formation of meiospores, which grew out into male and female plants. Thalli of sporophytes were observed but they never reached a length of more than one mm before they died or changed to an irregular pattern of growth.  相似文献   

8.
Circadian periodicity in cell division and death was investigated in the cyanobacterium Anabaena flos-aquae (Lyngb.) Bréb in a phosphorus (P)-limited, N2-fixing chemostat culture. When entrained under 12:12 h LD cycles, not only cell division but also cell death showed a clear circadian rhythm in this filamentous cyanobacterium. The rhythm persisted under continuous light and was temperature compensated. Circadian rhythm was clearly observed in the steady-state cell number and instantaneous growth rate, μ(t), which reached a maximum at about 2 h before sunset and a minimum at about 2 h before sunrise. The number of dead cells and the instantaneous death rate γ(t) also showed a circadian periodicity; the peak of γ(t) occurred approximately 8 h before that of μ(t). Therefore, cell growth and death in A. flos-aquae appear to be under the control of circadian clocks, and thus it seems that their death is programmed cell death.  相似文献   

9.
Anabaena flos-aquae (Lyngb.) Bréb. was grown in varying concentrations of nitrate. Specific growth rates, as estimated in batch culture, were constant and approached the maximum rate at all concentrations of NO3?-N tested bewteen 0 and 400 μ/L. Steady-state biomass, as determined in semicontinuous culture, did not vary with NO3? at slower dilution rates. However at a faster dilution rate, significantly less biomass occurred in intermediate concentrations of NO3? than in either higher or lower concentrations. The results indicate that both growth rate and standing crop are maximized by either N2 fixation or NO3? assimilation, but extracellular NO3? reduces the rate of N2 fixation. Consequently, at very low NO3? concentrations, growth is virtually maximized by N2 fixation alone, and at high concentrations of NO3?, N2 fixation is inhibited but growth is maximized by assimilation of NO3?. At intermediate concentrations of NO3?, growth becomes a function of NO3? assimilation augmented by N2 fixation. In this case, full growth potential is realized only if hydraulic residence time is sufficiently long to compensate for the reduced rate of N2 fixation. Growth rate and standing crop are not diminished in response to the large amount of energy allocated to N2 fixation. Instead, other cellular processes are probably affected negatively during N2 fixation.  相似文献   

10.
Bacteria-free cultures of the prasinophyte Micromonas pusilla (Butcher) Monton and Parke, UTEX LB 991, were produced by intially determining the effects of several antibiotics on the growth of this alga and then using a combination of these antibiotics to eliminate associated bacteria, Micrononas pusilla was resistant ot penicillin G, neomycin, gentamicin and streptomycin at bactericidal concentrations but sensitive to chloramphenicol and polymixin B. Passage of M. pusilla through the sequence of antibioties penicillin G → neomycin → gentamician → kanamycin resulted in an axenic culture of M, pusilla this method should be suitable for producing axenic culture of other strains of M. pusilla.  相似文献   

11.
Axenic cultures of Trentepohlia species are necessary for the study of growth and hysiological characters of the algae. We describe the use of a Sherman micromanipulator to isolate filaments from samples of T. aurea and T. odorata collected from their natural habitats. These filaments were then used as inocula for the establishment of axenic cultures. In the case of T. aurea, further treatment with lactic acid was necessary.  相似文献   

12.
The marine amoeba Trichosphaerium Am-I-7 was used as a tool for preparing unialgal axenic cultures of nondigestible Symbiodinium and Porphyridium species. The resistance of these unicellular algae to the amoebal digestive enzymes, and the differential digestion of bacteria, protozoans, and other algae, resulted in cleansed cells of Symbiodinium and Porphyridium that remained in the amoebal food vacuoles. During multiple fission, the amoeba evacuated its food vacuoles and released the trapped and intact algae, which were then successfully cultured. This method of cleaning was especially useful with algal species that were sensitive to antibiotics or other germicidal agents.  相似文献   

13.
Measurements of the gas vesicle space in steady-state light or phosphate-limited cultures of Aphanizomenon flos-aquae Ralfs, strain 7905 showed that gas vesicle content decreased as energy-limited growth rate increased but was the same at several phosphate-limited growth rates. Upon a decrease in growth irradiance, gas vesicle content did increase in phosphate-limited cultures, but the cultures remained nonbuoyant as long as P was limiting. Buoyant, energy-limited cultures lost their buoyancy in less than 2 h when exposed to higher irradiances. The primary mechanism for buoyancy loss was the accumulation of polysaccharide as ballast. Collapse of gas vesicles by turgor pressure played a minor role in the loss of buoyancy. When cultures were exposed to higher irradiances, cells continued to synthesize gas vesicles at the same rate as before the shift for at least 1 generation time. The amount of ballast required to make individual filaments in the population sink varied 4-fold. This variation appears to be due to differences in gas vesicle content among individual filaments.  相似文献   

14.
Measurements of the gas vesicle space in steady-state light or phosphate-limited cultures of Aphanizomenon flos-aquae Ralfs, strain 7905 showed that gas vesicle content decreased as energy-limited growth rate increased hut was the same at several phosphate-limited growth rates. Upon a decrease in growth irradiance, gas vesicle content did increase in phosphate-limited cultures, hut the cultures remained nonbuoyant as long as P was limiting. Buoyant, energy-limited cultures lost their buoyancy in less than 2 h when exposed to higher irradiances. The primary mechanism for buoyancy loss was the accumulation of polysaccharide as ballast. Collapse of gas vesicles by turgor pressure played a minor role in the loss of buoyancy. When cultures were exposed to higher irradiances, cells continued to synthesize gas vesicles at the same rate as before the shift for at least 1 generation time. The amount of ballast required to make individual filaments in the population sink varied 4-fold. This variation appears to be due to differences in gas vesicle content among individual filaments.  相似文献   

15.
Kinetics of cell death and the production of dissolved organic carbon (DOC) were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown on three different N sources (N2nitrate, and ammonium) in a phosphorus (P)-limited chemostat. The fraction of live cells in the total population increased as growth rate increased with decreasing P limitation. Cell death was less in nitrate and ammonium media than in N2. The specific death rate (γ), when calculated as the slope ofv?1x vs. D?1, where vxand D are live cell fraction (or cell viability) and dilution rate, respectively, was 0. 0082 day?1 in N2and 0.0042 day?1 in nitrate. The slope of the plot in ammonium culture was not significant; however, the value of the live cell fraction was within the range for the NO?3culture. The fraction of live vegetative cells in N2 culture was constant at all growth rates and the increase in the overall live cell fraction with growth rate was due entirely to an increase in live heterocysts. Live heterocysts comprised 3.5% of the total cells at a growth rate of 0.25 day?1 and increased to 6.3% at 0.75 day?1 with the ratio of live heterocysts to live vegetative cells linearly increasing with growth rate. The fraction of live vegetative cells was invariant in nitrate cultures us in N2cultures. The live heterocysts fraction also increased with growth rate in nitrate cultures, along with the live heterocysts : live vegetative cells ratio, but the level was lower than in N2cultures. DOC released from dead cells increased inversely with growth rate in N2from 36.4% of the total DOC at a growth rate of 0.75 day?1 to 54.15% at 0.25 day?1. The contribution of cell death to the total DOC production in nitrate and ammonium media was significantly less than that under N2DOC from dead cells consisted mainly of high-molecular-weight compounds, whereas DOC excreted from live cells was largely of low molecular weight.  相似文献   

16.
Biological factors have been found which can cause variable toxicity of colony and clonal isolates of Anabaena flos-aquae (Lyngb.) de Bréb. when cultured in the laboratory. These factors help to explain some of the variable toxicity of and animal susceptibility to A. flos-aquae blooms in nature. Two bacteria in the Enterobacteriaceae isolated from a toxic waterbloom, depressed toxin production in selected bacteria-free toxic clones of A. flos-aquae. These toxin-depressing bacteria decreased culture toxicity 3-fold from 80 to 240 mg/kg (intra-peritoneal in male mice). Many colony isolates from a toxic bloom had minimum lethal dosages (LDmin) greater than 240 mg/kg. This was because they were composed of mixtures of toxic and nontoxic filaments. The oral LDmin of the toxin from A. flos-aquae clonal isolate NRC-44-1 varied significantly for 6 different animal species. Using these oral LDmin it is estimated that a surface-concentrated bloom of toxic A. flos-aquae, having a biomass density of 20 mg/ml dry weight, would cause death of ducks or calves when 20 ml/kg was consumed whereas a monogastric animal such as a rat would require 80 ml/kg.  相似文献   

17.
We report the production of large numbers of transparent exopolymer particles (TEP) from polysaccharidic capsules of Anabaena spiroides Kleb. in cultures. Two biotic pathways of TEP formation were observed: (1) fragmentation of small portions of the capsules, which occurred throughout the growth phases; and (2) transformation of the whole polysaccharidic capsules into TEP, following cellular lyses in the aging culture. Photographic documentation of these processes was performed after staining small aliquots of the samples with Alcian Blue and negative staining with India ink. Concentrations of TEP were determined in distinct culture growth phases using semiquantitative Alcian Blue staining. Concentrations of TEP increased throughout the experimental time, while Alcian Blue remaining in solution decreased. Decreasing concentrations of chl a indicated cellular death, and by the end of the experiment, TEP formed by both pathways accumulate in the culture medium. These results show that virtually all dead chains of A. spiroides are transformed into TEP in the aged culture.  相似文献   

18.
Occurrences of rare cyanobacteria Anabaena reniformis Lemmerm. and Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek were recently detected at several localities in the Czech Republic. Two monoclonal strains of An. reniformis and one strain of Aph. aphanizomenoides were isolated from distant localities and different sampling years. They were characterized by a combination of morphological, genetic, and biochemical approaches. For the first time, partial 16S rRNA gene sequences were obtained for these morphospecies. Based on this gene, all of these strains clustered separately from other planktonic Anabaena and Aphanizomenon strains. They appeared in a cluster with Cylindrospermopsis Seenaya et Subba Raju and Raphidiopsis F. E. Fritsch et M. F. Rich, clustered closely together with two An. kisseleviana Elenkin strains available from GenBank. A new generic entity was defined (Sphaerospermum gen. nov., with the type species S. reniforme, based on the traditional species An. reniformis). These results contribute significantly to the knowledge base about genetic heterogeneity among planktonic Anabaena–like and Aphanizomenon–like morphospecies. Accordingly, the subgenus Dolichospermum, previously proposed for the group of planktonic Anabaena, should be revaluated. Secondary metabolite profiles of the An. reniformis and Aph. aphanizomenoides strains differed considerably from 17 other planktonic Anabaena strains of eight morphospecies isolated from Czech water bodies. Production of puwainaphycin A was found in both of the An. reniformis strains. Despite the relatively short phylogenetic distance from Cylidrospermopsis, the production of cylindrospermopsin was not detected in any of our strains.  相似文献   

19.
To better understand developmental phenomena in macroalgal tissue culture, we examined the morphogenesis of Porphyra yezoensis Ueda (strain TU-1) cultured aseptically in defined synthetic media . Generally, the filamentous thalli (sporophyte; conchocelis phase) of P. yezoensis were densely tufted with uniseriate filaments. The foliose thalli (gametophyte) were monolayered. In this study, axenic filamentous thalli retained their characteristic morphogenesis; there were no obvious differences between morphogenetic traits in unialgal and axenic conditions. However, conchospores, which might have developed into the foliose form under unialgal conditions, germinated into calluslike masses under axenic conditions. Most of the gametophytes gradually lost their typical morphogenesis after the first longitudinal cell division. Some of the calluslike masses developed rhizoidlike structures in several places or along the entire mass. Therefore, we concluded that P. yezoensis, in axenic cultures, loses its typical morphogenesis only during the gametophytic phase. The axenic tissue culture of Porphyra established in this study is a promising assay system for the identification of growth and morphogenetic factors.  相似文献   

20.
The presence of up to 500 μg sulfur·l?1 of an equimolar mixture of cysteine and methionine had virtually no effect on the SO42- uptake rate of Navicula pelliculosa, (Bréb.) Hilse whereas the rate of Ankistrodesmus falcatus (Corda) Ralfs was decreased by the presence of 500 μg S· l?1 and Anabaena flos-aquae (Lyngbye) Bréb. by 50 μg S·l?1. Primary productivity in these axenic cultures was affected (decreased) only in A. falcatus. The C:S uptake ratio was lowest in N. pelliculosa and highest in A. falcatus. Considering these species as representative of groups of naturally occurring algae, patterns of SO42- uptake and primary productivity in a eutrophic and a moderately oligotrophic lake reflected the results of the algal culturing experiments: SO42- uptake rates, relative to primary productivity, were higher in the presence of diatoms and bluegreen algae and lower when green algae were present; the addition of the cysteine I methionine mixture to the lake waters decreased the rate of microplankton SO42- uptake in correlation with the makeup of the algal community; primary productivity decreased upon the addition of cysteine I methionine when green algae were relatively abundant. It is concluded that, in most fresh water systems, the effects of organic sulfur pollution on algal SO42- uptake and primary productivity are insignificant as compared to other ecological changes that occur due to that pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号