首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Whether or not organisms become infected by parasites is likely to be a complex interplay between host and parasite genotypes, as well as the physiological condition of both species. Details of this interplay are very important because physiology‐driven susceptibility has the potential to confound genetic coevolutionary responses. Here we concentrate on how physiological aspects of infection may interfere with genetic‐based infectivity in a snail–trematode (Potamopyrgus antipodarum/Microphallus sp.) interaction by asking: (1) how does host condition affect susceptibility to infection? and (2) how does host condition affect the survival of infected individuals? We manipulated host condition by experimentally varying resources. Contrary to our expectation, host condition did not affect susceptibility to infection, suggesting that genetics are more important than physiology in this regard. However, hosts in poor condition had higher parasite‐induced mortality than hosts in good condition. Taken together, these results suggest that coevolutionary interactions with parasites may depend on host condition, not by altering susceptibility, but rather by affecting the likelihood of parasite transmission.  相似文献   

2.
Numerous host qualities can modulate parasite fitness, and among these, host nutritive resources and immunity are of prime importance. Indeed, parasite fitness increases with the amount of nutritive resources extracted from the host body and decreases with host immune response. To maximize fitness, parasites have therefore to balance these two host components. Yet, because host nutritive resources and immunity both increase with host body condition, it is unclear whether parasites perform better on hosts in prime, intermediate, or poor condition. We investigated blood meal size and survival of the ectoparasitic louse fly Crataerina melbae in relation to body condition and cutaneous immune response of their Alpine swift (Apus melba) nestling hosts. Louse flies took a smaller blood meal and lived a shorter period of time when feeding on nestlings that were experimentally food deprived or had their cutaneous immune response boosted with methionine. Consistent with these results, louse fly survival was the highest when feeding on nonexperimental nestlings in intermediate body condition. Our findings emphasize that although hosts in poor condition had a reduced immunocompetence, parasites may have avoided them because individuals in poor condition did not provide adequate resources. These findings highlight the fact that giving host immunocompetence primary consideration can result in a biased appraisal of host-parasite interactions.  相似文献   

3.
Epidemiological dynamics depend on the traits of hosts and parasites, but hosts and parasites are heterogeneous entities that exist in dynamic environments. Resource availability is a particularly dynamic and potent environmental driver of within‐host infection dynamics (temporal patterns of growth, reproduction, parasite production and survival). We developed, parameterised and validated a model for resource‐explicit infection dynamics by incorporating a parasitism module into dynamic energy budget theory. The model mechanistically explained the dynamic multivariate responses of the human parasite Schistosoma mansoni and its intermediate host snail to variation in resources and host density. At the population level, feedbacks mediated by resource competition could create a unimodal relationship between snail density and human risk of exposure to schistosomes. Consequently, weak snail control could backfire if reductions in snail density release remaining hosts from resource competition. If resource competition is strong and relevant to schistosome production in nature, it could inform control strategies.  相似文献   

4.
Trajectories of life-history traits such as growth and reproduction generally level off with age and increasing size. However, colonial animals may exhibit indefinite, exponential growth via modular iteration thus providing a long-lived host source for parasite exploitation. In addition, modular iteration entails a lack of germ line sequestration. Castration of such hosts by parasites may therefore be impermanent or precluded, unlike the general case for unitary animal hosts. Despite these intriguing correlates of coloniality, patterns of colonial host exploitation have not been well studied. We examined these patterns by characterizing the responses of a myxozoan endoparasite, Tetracapsuloides bryosalmonae, and its colonial bryozoan host, Fredericella sultana, to 3 different resource levels. We show that (1) the development of infectious stages nearly always castrates colonies regardless of host condition, (2) castration reduces partial mortality and (3) development of transmission stages is resource-mediated. Unlike familiar castrator-host systems, this system appears to be characterized by periodic rather than permanent castration. Periodic castration may be permitted by 2 key life history traits: developmental cycling of the parasite between quiescent (covert infections) and virulent infectious stages (overt infections) and the absence of germ line sequestration which allows host reproduction in between bouts of castration.  相似文献   

5.
Shell damage and parasitic infections are frequent in gastropods, influencing key snail host life‐history traits such as survival, growth, and reproduction. However, their interactions and potential effects on hosts and parasites have never been tested. Host–parasite interactions are particularly interesting in the context of the recently discovered division of labor in trematodes infecting marine snails. Some species have colonies consisting of two different castes present at varying ratios; reproductive members and nonreproductive soldiers specialized in defending the colony. We assessed snail host survival, growth, and shell regeneration in interaction with infections by two trematode species, Philophthalmus sp. and Maritrema novaezealandense, following damage to the shell in the New Zealand mud snail Zeacumantus subcarinatus. We concomitantly assessed caste‐ratio adjustment between nonreproductive soldiers and reproductive members in colonies of the trematode Philophthalmus sp. in response to interspecific competition and shell damage to its snail host. Shell damage, but not parasitic infection, significantly increased snail mortality, likely due to secondary infections by pathogens. However, trematode infection and shell damage did not negatively affect shell regeneration or growth in Z. subcarinatus; infected snails actually produced more new shell than their uninfected counterparts. Both interspecific competition and shell damage to the snail host induced caste‐ratio adjustment in Philophthalmus sp. colonies. The proportion of nonreproductive soldiers increased in response to interspecific competition and host shell damage, likely to defend the parasite colony and potentially the snail host against increasing threats. These results indicate that secondary infections by pathogens following shell damage to snails both significantly increased snail mortality and induced caste‐ratio adjustments in parasites. This is the first evidence that parasites with a division of labor may be able to produce nonreproductive soldiers according to environmental factors other than interspecific competition with other parasites.  相似文献   

6.
While the host immune system is often considered the most important physiological mechanism against parasites, precontact mechanisms determining exposure to parasites may also affect infection dynamics. For instance, chemical cues released by hosts can attract parasite transmission stages. We used the freshwater snail Lymnaea stagnalis and its trematode parasite Echinoparyphium aconiatum to examine the role of host chemical attractiveness, physiological condition, and immune function in determining its susceptibility to infection. We assessed host attractiveness through parasite chemo‐orientation behavior; physiological condition through host body size, food consumption, and respiration rate; and immune function through two immune parameters (phenoloxidase‐like and antibacterial activity of hemolymph) at an individual level. We found that, although snails showed high variation in chemical attractiveness to E. aconiatum cercariae, this did not determine their overall susceptibility to infection. This was because large body size increased attractiveness, but also increased metabolic activity that reduced overall susceptibility. High metabolic rate indicates fast physiological processes, including immune activity. The examined immune traits, however, showed no association with susceptibility to infection. Our results indicate that postcontact mechanisms were more likely to determine snail susceptibility to infection than variation in attractiveness to parasites. These may include localized immune responses in the target tissue of the parasite. The lack of a relationship between food consumption and attractiveness to parasites contradicts earlier findings that show food deprivation reducing snail attractiveness. This suggests that, although variation in resource level over space and time can alter infection dynamics, variation in chemical attractiveness may not contribute to parasite‐induced fitness variation within populations when individuals experience similar environmental conditions.  相似文献   

7.
Experimental infections provide an important foundation for understanding host responses to parasites. While infections with Ribeiroia ondatrae cause mortality and malformations in a wide range of amphibian second intermediate host species, little is known about how the parasite affects its snail first intermediate hosts or even what species can support infection. In this study, we experimentally exposed Helisoma trivolvis, a commonly reported host of R. ondatrae, and Biomphalaria glabrata, a confamilial snail known to host Ribeiroia marini, to increasing concentrations of embryonated eggs of R. ondatrae obtained from surrogate definitive hosts. Over the course of 8 wk, we examined the effect of parasite exposure on infection status, time-to-cercariae release, host size, and mortality of both snail species. Helisoma trivolvis was a highly competent host for R. ondatrae infection, with over 93% infection in all exposed snails, regardless of egg exposure level. However, no infections were detected among exposed B. glabrata, despite previous accounts of this snail hosting a congener parasite. Among exposed H. trivolvis, high parasite exposure reduced growth, decreased time-to-cercariae release, and caused marginally significant increases in mortality. Interestingly, while B. glabrata snails did not become infected with R. ondatrae, individuals exposed to 650 R. ondatrae eggs grew less rapidly than unexposed snails, suggesting a sub-lethal energetic cost associated with parasite exposure. Our results highlight the importance of using experimental infections to understand the effects of parasite exposure on host- and non-host species, each of which can be affected by exposure.  相似文献   

8.
Parasite survival in hosts mainly depends on the capacity to circumvent the host immune response. Acanthocephalan infections in gammarids are linked with decreased activity of the prophenoloxidase (ProPO) system, suggesting an active immunosuppression process. Nevertheless, experimental evidence for this hypothesis is lacking: whether these parasites affect several immune pathways is unknown and the consequences of such immune change have not been investigated. In particular, the consequences for other pathogens are not known; neither are the links with other parasite-induced manipulations of the host. Firstly, using experimental infections of Pomphorhynchus laevis we confirmed that the lower immune activity in parasitised Gammarus pulex is induced by the parasite infection. Second, using natural infections of three different parasites, P. laevis, Pomphorhynchus tereticollis and Polymorphus minutus, we showed that acanthocephalan infection was associated with reduction of the activity of the ProPO system and the haemocyte concentration (two major parameters of crustacean immunity) suggesting that immune depression is a phenomenon affecting several immunological activities. This was confirmed by the fact that acanthocephalan infection (whatever the parasite species) was linked to a lower efficiency to eliminate a bacterial infection. The result suggests a cost of parasite immune depression. Finally, acanthocephalans are also known to induce behavioural alterations in the intermediate host which favour their transmission to definitive hosts. We did not find any correlation between behavioural and immunological alterations in both experimentally and naturally-infected gammarids. Overall, this study suggests that whilst immune depression might be beneficial to acanthocephalan survival within the intermediate gammarid host, it might also be costly if it increases host mortality to additional infections before transmission of the parasite.  相似文献   

9.
Parasites often exert strong selection pressures on their hosts that have evolved anti-parasite defences to counter the negative effects of parasites. We studied the relationship between intensity of parasitism, one aspect of host immune response, and host reproductive success, using the house martin bug Oeciacushirundinis and its house martin Delichonurbica host as a model system. Experimental manipulation of parasite load of nests during laying of the first clutch altered the intensity of parasitism. Parasites reduced the reproductive success of their hosts measured in terms of body condition and survival of nestlings. Host immune response, measured as the concentration of gammaglobulins and total plasma proteins, was positively associated with parasite reproduction, estimated as the number of juvenile parasites, but was only weakly related to the intensity of adult parasites. The concentration of gammaglobulins was negatively related to nestling body mass, implying a trade-off between immune function and body condition. Parasite reproduction thus exerts a cost on hosts by increasing the immune response. Received: 25 August 1997 / Accepted: 3 November 1997  相似文献   

10.
Summary

Although parasitic infections have been shown to be critical for growth, reproduction and survival of many vertebrates, little is known about the impact of parasites on invertebrate hosts and particular on molluscs. Therefore, it is of interest how parasites may affect their invertebrate hosts and how hosts can manage the detrimental effect of infections. In the present study, the naturally widespread parasitic mite Riccardoella limacum, which has been suggested to play an important role in the ecology of the land snail Arianta arbustorum, was artificially transferred to A. arbustorum. We experimentally examined the effect of the parasite on the food consumption, shell growth, and survival of its host. Surprisingly, we found minor impacts in some traits, i.e. we found that infected and uninfected snails similarly completed their shell growth, attained sexual maturity, and allocated equal energy into their albumen glands. However, infected snails consumed less and showed a significantly higher mortality after winter than uninfected snails.  相似文献   

11.
Within a single organism, numerous parasites often compete for space and resources. This competition, together with a parasite’s ability to locate and successfully establish in a host, can contribute to the distribution and prevalence of parasites. Coinfection with trematodes in snail intermediate hosts is rarely observed in nature, partly due to varying competitive abilities among parasite taxa. Using a freshwater snail host (Biomphalaria glabrata), we studied the ability of a competitively dominant trematode, Echinostoma caproni, to establish and reproduce in a host previously infected with a less competitive trematode species, Schistosoma mansoni. Snails were exposed to S. mansoni and co-exposed to E. caproni either simultaneously or 1 week, 4 weeks, or 6 weeks post S. mansoni exposure. Over the course of infection, we monitored the competitive success of the dominant trematode through infection prevalence, parasite development time, and parasite reproductive output. Infection prevalence of E. caproni did not differ among co-exposed groups or between co-exposed and single exposed groups. However, E. caproni infections in co-exposed hosts took longer to reach maturity when the timing between co-exposures increased. All co-exposed groups had higher E. caproni reproductive output than single exposures. We show that although timing of co-exposure affects the development time of parasite transmission stages, it is not important for successful establishment. Additionally, co-exposure, but not priority effects, increases the reproductive output of the dominant parasite.  相似文献   

12.
Parasite virulence affects both the temporal dynamics of host-parasite relationships and the degree to which parasites regulate host populations. If hosts can compensate for parasitism, then parasites may exhibit condition-dependent virulence, with high virulence being seen only when the host is under conditions of stress. Despite their usually low level of virulence, theory suggests that such parasites may still affect host population dynamics. We tested whether a trypanosome intestinal parasite of bumblebees, Crithidia bombi , expresses condition-dependent virulence. Hosts were infected with the parasite and then kept under either favourable or starvation (stressed) conditions. Under favourable conditions the infection caused no mortality, while when hosts were starved the infection increased the host mortality rate by 50%. In addition, we found a parasite-related change in host resource allocation patterns. Infected bees invested relatively more resources into their fat body and less into their reproductive system than did non-infected bees. Whether this reallocation is parasite-driven, to enhance transmission, or a host-response to parasitism, remains unknown.  相似文献   

13.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

14.
Studer A  Lamare MD  Poulin R 《Parasitology》2012,139(4):537-546
The transmission of parasites takes place under exposure to a range of fluctuating environmental factors, one being the changing levels of solar ultraviolet radiation (UVR). Here, we investigated the effects of ecologically relevant levels of UVR on the transmission of the intertidal trematode Maritrema novaezealandensis from its first intermediate snail host (Zeacumantus subcarinatus) to its second intermediate amphipod host (Paracalliope novizealandiae). We assessed the output of parasite transmission stages (cercariae) from infected snail hosts, the survival and infectivity of cercariae, the susceptibility of amphipod hosts to infection (laboratory experiments) and the survival of infected and uninfected amphipod hosts (outdoor experiment) when exposed to photo-synthetically active radiation only (PAR, 400-700 nm; no UV), PAR+UVA (320-700 nm) or PAR+UVA+UVB (280-700 nm). Survival of cercariae and susceptibility of amphipods to infection were the only two steps significantly affected by UVR. Survival of cercariae decreased strongly in a dose-dependent manner, while susceptibility of amphipods increased after exposure to UVR for a prolonged period. Exposure to UVR thus negatively affects both the parasite and its amphipod host, and should therefore be considered an influential component in parasite transmission and host-parasite interactions in intertidal ecosystems.  相似文献   

15.
Life-history theory predicts that sexually reproducing organisms have evolved to resolve resource-allocation trade-offs between growth/survival versus reproduction, and current versus future reproduction. Malaria parasites replicate asexually in their vertebrate hosts, but must reproduce sexually to infect vectors and be transmitted to new hosts. As different specialized stages are required for these functions, the division of resources between these life-history components is a fundamental evolutionary problem. Here, we test how drug-sensitive and drug-resistant isolates of the human malaria parasite Plasmodium falciparum resolve the trade-off between in-host replication and between-host transmission when exposed to treatment with anti-malarial drugs. Previous studies have shown that parasites increase their investment in sexual stages when exposed to stressful conditions, such as drugs. However, we demonstrate that sensitive parasites facultatively decrease their investment in sexual stages when exposed to drugs. In contrast to previous studies, we tested parasites from a region where treatment with anti-malarial drugs is common and transmission is seasonal. We hypothesize that when exposed to drugs, parasites invest in their survival and future transmission by diverting resources from reproduction to replication. Furthermore, as drug-resistant parasites did not adjust their investment when exposed to drugs, we suggest that parasites respond to changes in their proliferation (state) rather the presence of drugs.  相似文献   

16.
An experimental epidemiological approach was chosen to study the survival and infection dynamics of Gyrodactylus salaris on juvenile rainbow trout, Oncorhynchus mykiss , in the laboratory. A marked heterogeneity in the host stock was apparent. The rainbow trout could be divided into three groups on the basis of parasite survival and infection pattern on individually isolated fish: (1) hosts receptive to initial parasite attachment, but unreceptive to parasite establishment and reproduction; (2) hosts moderately susceptible to parasite establishment and reproduction, but which, after a period of restricted parasite population growth, responded, recovered and eliminated the parasites; and (3) hosts very susceptible to parasite infection and reproduction, but which, after a period of significant parasite population growth, responded, recovered and eliminated the parasites. These different patterns are considered to reflect genetic differences between host individuals. Parasite aggregation was also shown to be an important factor in the outcome of the host-parasite association. The parasites were finally eliminated on the individually isolated hosts, but not on hosts maintained in batches and so host population size and immigration of fresh. previously unexposed, hosts appeared to be important for growth and maintenance of the parasite population. The parasite was not found to cause host mortality. Rainbow trout was a suitable host for G. salaris , capable of transmitting the parasite to new localities as a consequence of stocking programmes or migratory behaviour.  相似文献   

17.
African trypanosomes are single-celled protozoan parasites that are capable of long-term survival while living extracellularly in the bloodstream and tissues of mammalian hosts. Prolonged infections are possible because trypanosomes undergo antigenic variation—the expression of a large repertoire of antigenically distinct surface coats, which allows the parasite population to evade antibody-mediated elimination. The mechanisms by which antigen genes become activated influence their order of expression, most likely by influencing the frequency of productive antigen switching, which in turn is likely to contribute to infection chronicity. Superimposed upon antigen switching as a contributor to trypanosome infection dynamics is the density-dependent production of cell-cycle arrested parasite transmission stages, which limit the infection while ensuring parasite spread to new hosts via the bite of blood-feeding tsetse flies. Neither antigen switching nor developmental progression to transmission stages is driven by the host. However, the host can contribute to the infection dynamic through the selection of distinct antigen types, the influence of genetic susceptibility or trypanotolerance and the potential influence of host-dependent effects on parasite virulence, development of transmission stages and pathogenicity. In a zoonotic infection cycle where trypanosomes circulate within a range of host animal populations, and in some cases humans, there is considerable scope for a complex interplay between parasite immune evasion, transmission potential and host factors to govern the profile and outcome of infection.  相似文献   

18.
Theoretical models predict that parasite relatedness affects the outcome of competition between parasites, and the evolution of parasite virulence. We examined whether parasite relatedness affects competition between parasitic plants (Cuscuta europaea) that share common host plants (Urtica dioica). We infected hosts with two parasitic plants that were either half-siblings or nonrelated. Relative size asymmetry between the competing parasites was significantly higher in the nonrelated infections compared to infections with siblings. This higher asymmetry was caused by the fact that the performance of some parasite genotypes decreased and that of others increased when grown in multiple infections with nonrelated parasites. This result agrees with the predictions of theories on the evolution of parasite virulence: to enhance parasite transmission, selection may favour reduced competition with genetically related parasites in hosts infected by several genotypes. However, in contrast to the most common predictions, nonrelated infections were not more virulent than the sibling infections.  相似文献   

19.
All organisms must trade off resource allocation between different life processes that determine their survival and reproduction. Malaria parasites replicate asexually in the host but must produce sexual stages to transmit between hosts. Because different specialized stages are required for these functions, the division of resources between these life-history components is a key problem for natural selection to solve. Despite the medical and economic importance of these parasites, their reproductive strategies remain poorly understood and often seem counterintuitive. Here, we tested recent theory predicting that in-host competition shapes how parasites trade off investment in in-host replication relative to between-host transmission. We demonstrate, across several genotypes, that Plasmodium chabaudi parasites detect the presence of competing genotypes and facultatively respond by reducing their investment in sexual stages in the manner predicted to maximize their competitive ability. Furthermore, we show that genotypes adjust their allocation to sexual stages in line with the availability of exploitable red blood cell resources. Our findings are predicted by evolutionary theory developed to explain life-history trade-offs in more traditionally studied multicellular taxa and suggest that the answer to the long-standing question of why so few transmission stages are produced is that in most natural infections heavy investment in reproduction may compromise in-host survival.  相似文献   

20.
Parasite diversity is a constant challenge to host immune systems and has important clinical implications, but factors underpinning its emergence and maintenance are still poorly understood. Hosts typically harbour multiple parasite genotypes that share both host resources and immune responses. Parasite diversity is thus shaped not only by resource competition between co-infecting parasites but also by host-driven immune-mediated competition. We investigated these effects in an insect-trypanosome system, combining in vivo and in vitro single and double inoculations. In vivo, a non-pathogenic, general immune challenge was used to manipulate host immune condition and resulted in a reduced ability of hosts to defend against a subsequent exposure to the trypanosome parasites, illustrating the costs of immune activation. The associated increase in available host space benefited the weaker parasite strains of each pair as much as the otherwise more competitive strains, resulting in more frequent multiple infections in immune-challenged hosts. In vitro assays showed that in the absence of a host, overall parasite diversity was minimal because the outcome of competition was virtually fixed and resulted in strain extinction. Altogether, this shows that parasite competition is largely host-mediated and suggests a role for host immune condition in the maintenance of parasite diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号