首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monotypic genus Hormiops Fage, 1933 is so far only known from two groups of granitic islands off the coasts of Peninsular Malaysia and Vietnam. Examination of newly collected material from both archipelagos and of the type series of Hormiops davidovi Fage, 1933 reveals previously disregarded morphological differences sufficient to assign the Malaysian specimens to a distinct species, described here as Hormiops infulcra sp. nov. An updated diagnosis of the genus, as well as a dichotomic key enabling the determination of Hormiops from its close relatives, Hormurus Thorell, 1876 and Liocheles Sundevall, 1833 are also provided. The phylogenetic position, distribution pattern, and ecology of these insular scorpions suggest that they are palaeoendemics, remnants of a previously more widely distributed lineage. A biogeographical model is proposed for the genus based on these observations and on a synthesis of palaeogeographical and palaeoenvironmental data currently available for Sundaland.  相似文献   

2.
3.
Eleotris species (Teleostei: Eleotridae) are one of the most common fish in Indo‐Pacific estuaries and insular freshwater streams. In these rivers, they are a sit‐and‐wait predator. They have an amphidromous life cycle, that is adults grow, feed and reproduce in rivers, while larvae have a marine dispersal phase. Larvae recruit back to rivers and settle in stream habitats. Primary characters used to determine Eleotris species are the presence and the disposition of cephalic sensory papillae rows on the operculum and under the eyes as well as scale row numbers. The morphology of these cephalic sensory papillae is of particular importance in this predatory genus as it is generally correlated in fish to predation and feeding. In this paper, we have established a molecular phylogeny of the genus based on the 12 mitochondrial protein‐coding genes to discuss the relationship between Indo‐Pacific Eleotris species. There is a well‐supported dichotomy in the molecular phylogeny, and this separation into two main clades is also morphologically visible, as it reveals a difference in the arrangement of cephalic sensory papillae. Indeed, the phylogeny distinguishes the species with the “open” pattern of the operculum sensory papillae and the species with the “closed” one. This phylogeny thus reflects the morphology of the opercular papillae. The evolution of this character is discussed in terms of the adaptation of the Eleotris genus to life in tropical insular river systems.  相似文献   

4.
We describe Halmaheramys bokimekot Fabre, Pagès, Musser, Fitriana, Semiadi & Helgen gen. et sp. nov. , a new genus and species of murine rodent from the North Moluccas, and study its phylogenetic placement using both molecular and morphological data. We generated a densely sampled mitochondrial and nuclear DNA data set that included most genera of Indo‐Pacific Murinae, and used probabilistic methodologies to infer their phylogenetic relationships. To reconstruct their biogeographical history, we first dated the topology and then used a Lagrange analysis to infer ancestral geographic areas. Finally, we combined the ancestral area reconstructions with temporal information to compare patterns of murine colonization among Indo‐Pacific archipelagos. We provide a new and comprehensive molecular phylogenetic reconstruction for Indo‐Pacific Murinae, with a focus on the Rattus division. Using previous results and those presented in this study, we define a new Indo‐Pacific group within the Rattus division, composed of Bullimus, Bunomys, Paruromys, Halmaheramys, Sundamys, and Taeromys. Our phylogenetic reconstructions revealed a relatively recent diversification from the Middle Miocene to Plio‐Pleistocene associated with several major dispersal events. We identified two independent Indo‐Pacific dispersal events from both western and eastern Indo‐Pacific archipelagos to the isolated island of Halmahera, which led to the speciations of H. bokimekot gen. et sp. nov. and Rattus morotaiensis Kellogg, 1945. We propose that a Middle Miocene collision between the Halmahera and Sangihe arcs may have been responsible for the arrival of the ancestor of Halmaheramys to eastern Wallacea. Halmaheramys bokimekot gen. et sp. nov. is described in detail, and its systematics and biogeography are documented and illustrated. © 2013 The Linnean Society of London  相似文献   

5.
Phylogenetic relationships among 20 nominal species of tropical lutjanine snappers (Lutjanidae) (12 from the western Atlantic, one from the eastern Pacific, and seven from the Indo‐Pacific) were inferred based on 2206 bp (712 variable, 614 parsimony informative) from three protein‐coding mitochondrial genes. Also included in the analysis were DNA sequences from two individuals, identified initially as Lutjanus apodus, which were sampled off the coast of Bahia State in Brazil (western Atlantic), and from three individuals labelled as ‘red snapper’ in the fish market in Puerto Armuelles, Panama (eastern Pacific). Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported monophyly of all lutjanines sampled and the hypothesis that western Atlantic lutjanines are derived from an Indo‐Pacific lutjanine lineage. The phylogenetic hypothesis also indicated that oceans where lutjanines are distributed (western Atlantic, eastern Pacific, and Indo‐Pacific) are not reciprocally monophyletic for the species distributed within them. There were three strongly supported clades that included all western Atlantic lutjanines: one included six species of Lutjanus from the western Atlantic, two species of Lutjanus from the eastern Pacific, and the monotypic genera Rhomboplites and Ocyurus (western Atlantic); one that included three, probably four, species of Lutjanus in the western Atlantic; and one that included Lutjanus cyanopterus (western Atlantic), an unknown species of Lutjanus from the eastern Pacific, and three species of Lutjanus from the Indo‐Pacific. Molecular‐clock calibrations supported an early Miocene diversification of an Indo‐Pacific lutjanine lineage that dispersed into the western Atlantic via the Panamanian Gateway. Divergent evolution among these lutjanines appears to have occurred both by vicariant and ecological speciation: the former following significant geographic or geological events, including both shoaling and closure of the Panamanian Gateway and tectonic upheavals, whereas the latter occurred via phenotypic diversification inferred to indicate adaptation to life in different habitats. Taxonomic revision of western Atlantic lutjanines appears warranted in that monotypic Ocyurus and Rhomboplites should be subsumed within the genus Lutjanus. Finally, it appears that retail mislabelling of ‘red snapper’ in commercial markets extends beyond the USA. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 915–929.  相似文献   

6.
Scaptomyza is a highly diversified genus in the family Drosophilidae, having undergone an explosive radiation, along with the Hawaiian‐endemic genus Idiomyia in the Hawaiian Islands: about 60% of 269 Scaptomyza species so far described are endemic to the Hawaiian Islands. Two hypotheses have been proposed for the origin and diversification of Hawaiian drosophilids. One is the “single Hawaiian origin” hypothesis: Scaptomyza and Idiomyia diverged from a single common ancestor that had once colonized the Hawaiian Islands, and then non‐Hawaiian Scaptomyza migrated back to continents. The other is the “multiple origins” hypothesis: Hawaiian Scaptomyza and Idiomyia derived from different ancestors that independently colonized the Hawaiian Islands. A key issue for testing these two hypotheses is to clarify the phylogenetic relationships between Hawaiian and non‐Hawaiian species in Scaptomyza. Toward this goal, we sampled additional non‐Hawaiian Scaptomyza species, particularly in the Old World, and determined the nucleotide sequences of four mitochondrial and seven nuclear genes for these species. Combining these sequence data with published data for 79 species, we reconstructed the phylogeny and estimated ancestral distributions and divergence times. In the resulting phylogenetic trees, non‐Hawaiian Scaptomyza species were interspersed in two Hawaiian clades. From a reconstruction of ancestral biogeography, we inferred that Idiomyia and Scaptomyza diverged outside the Hawaiian Islands and then independently colonized the Hawaiian Islands, twice in Scaptomyza, thus supporting the “multiple origins” hypothesis.  相似文献   

7.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

8.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

9.
10.
Pisione is a scaleless group of small scale worms inhabiting sandy bottoms in shallow marine waters. This group was once considered rare, but now 45 described species can be characterized, among others, by their paired, segmental copulatory organs (one to multiple external pairs), which display a complexity of various accessory structures. The evolutionary significance of these unique organs was suggested in the late 1960s, but has been heavily debated since the late 1990s and remains controversial. In the present paper, we study the internal relationships within Pisione, employing combined phylogenetic analyses of both molecular and morphological data from 16 terminals of Pisione, as well as two terminals of Pisionidens, and eight additional scale worms as outgroups. Our taxon sampling covers all geographical areas where the genus has been reported, as well as most of their morphological and copulatory variability, including representatives of the “africana,” “remota,” “crassa,” and “papuensis” groups, established previously by Yamanishi. We hereby provide a first insight into the relationships of the genus, testing previously proposed hypotheses on the evolutionary significance of male copulatory structures within Pisione, while attempting to understand patterns of distribution. The phylogenetic analyses using maximum likelihood and Bayesian methods consistently recovered two large clades spanning the East Atlantic (including the Mediterranean) and the Indo‐Pacific–West Atlantic, respectively. Character optimization on our trees revealed a high degree of homoplasy in both non‐reproductive and sexual characters of Pisione, with buccal acicula found to be the sole apomorphy among the morphological features assessed herein, with none defining the biogeographical subclades within. Overall, our comparative analyses highlight the high degree of morphological variation in this widely distributed genus, rejecting previous assertions of an increasing number and complexity of copulatory structures across the genus.  相似文献   

11.
Squat lobsters have a worldwide distribution and are highly visible crustaceans living in a broad range of habitats. In this study, partial sequences of two mitochondrial DNA genes (16S rRNA and COI) and a nuclear gene (H3) were obtained for all but one of the known species of the shallow‐water genera Sadayoshia (Munididae) and Lauriea, Macrothea and Triodonthea (Galatheidae). Lauriea siagiani appeared to be phylogenetically closer to Triodonthea and Macrothea than to other Lauriea species, suggesting the need for taxonomic re‐evaluation of these taxa. All species of Sadayoshia formed a monophyletic group that would have diverged during the Paleogene (around 50 Mya). Our results support the hypothesis that the late Paleogene–Neogene transition was a period of rapid diversification for shallow‐water species of both Galatheidae and Munididae in the Indo‐Pacific region. This is probably related to high tectonic activity among the Eurasian, Philippine Sea, Indo‐Australian and Pacific plates and corresponding changes in distribution of habitats and ocean currents during the late Paleogene. Finally, the tropical south‐west Pacific province is identified as a major diversification centre for shallow‐water squat lobsters, from where species dispersed to other Pacific and Indian Ocean regions.  相似文献   

12.
13.
Amongst the most significant metazoan taxa associated with gastropod molluscs is the endoparasitic copepod family Splanchnotrophidae. Currently it contains five genera with highly modified morphology and exclusively infesting nudibranch and sacoglossan sea slug hosts. The present study is a first approach towards reconstructing their phylogeny and evolution. Cladistic analysis of 109 morphological characters including 24 known splanchnotrophid species resulted in a fully resolved strict consensus tree that is discussed in morphological, functional, and geographical frameworks. Alternative topologies are also explored. Originating from paraphyletic Philoblennidae, the Splanchnotrophidae emerge as sister group to the genus Briarella. Unique synapomorphies, such as the bizarre body shapes and successive reduction of mouthparts, are discussed as adaptive traits to endoparasitism that evolved only once within copepods infesting shell‐less heterobranch gastropods. The ancestrally Indo‐Pacific Splanchnotrophidae split up into a clade of the still Indo‐Pacific genera Ceratosomicola and Arthurius, sister to a clade composed of the monophyletic amphi‐American genus Ismaila and European Splanchnotrophus emerging from paraphyletic Lomanoticola. Although initial radiation of Briarella and Splanchnotrophidae is likely to have involved chromodoridid nudibranch hosts, later phylogenies of parasites and their hosts are incongruent; intriguingly, host shifts from nudibranch to only distantly related sacoglossan species occurred at least two times independently. Such remarkable ecological plasticity is assumed to have driven splanchnotrophid diversification. Topological hypotheses and historical biogeographical and evolutionary scenarios inferred herein can be tested by future molecular research. © 2013 The Linnean Society of London  相似文献   

14.
Indo‐Pacific reef corals growing for years in closed‐system aquaria provide an alternate means to investigate host–symbiont specificity and stability. The diversity of dinoflagellate endosymbionts (Symbiodinium spp.) from coral communities in private and public aquaria was investigated using molecular‐genetic analyses. Of the 29 symbiont types (i.e., species) identified, 90% belonged to the most prevalent group of Symbiodinium harbored by Indo‐Pacific reef corals, Clade C, while the rest belonged to Clade D. Sixty‐five percent of all types were known from field surveys conducted throughout the Pacific and Indian oceans. Because specific coral–dinoflagellate partnerships appear to have defined geographic distributions, correspondence of the same symbionts in aquarium and field‐collected specimens identifies regions where particular colonies must have been collected in the wild. Symbiodinium spp. in clade D, believed to be “stress‐tolerant” and/or “opportunistic,” occurred in a limited number of individual colonies. The absence of a prevalent, or “weedy,” symbiont suggests that conditions under which aquarium corals are grown do not favor competitive replacements of their native symbiont populations. The finding of typical and diverse assemblages of Symbiodinium spp. among aquarium corals living many years under variable chemical/physical conditions, artificial and natural light, while undergoing fragmentation periodically, indicates that individual colonies maintain stable, long‐term symbiotic associations.  相似文献   

15.
The predominantly Afrotropical genus Charaxes is represented by 31 known species outside of Africa (excluding subgenus Polyura Billberg). We explored the biogeographic history of the genus using every known non‐African species, with several African species as outgroup taxa. A phylogenetic hypothesis is proposed, based on molecular characters of the mitochondrial genes cytochrome oxidase subunit I (COI) and NADH dehydrogenase 5 (ND5), and the nuclear wingless gene. Phylogenetic analyses based on maximum parsimony and Bayesian inference of the combined dataset implies that the Indo‐Pacific Charaxes form a monophyletic assemblage, with the exception of Charaxes solon Fabricius. Eight major lineages are recognized in the Indo‐Pacific, here designated the solon (+African), elwesi, harmodius, amycus, mars, eurialus, latona, nitebis, and bernardus clades. Species group relationships are concordant with morphology and, based on the phylogeny, we present the first systematic appraisal and classification of all non‐African species. A biogeographical analysis reveals that, after the genus originated in Africa, the evolutionary history of Charaxes in the Indo‐Pacific, in particular Wallacea, may be correlated with the inferred geological and climatic history of the region. We propose that Wallacea was the area of origin of all Charaxes (excluding C. solon) occurring to the east of Wallace's [1863] Line. The earliest Indo‐Pacific lineages appear to have diverged subsequent to the initial fragmentation of a palaeo‐continent approximately 13 million years ago. Further diversification in Indo‐Pacific Charaxes appears primarily related to climatic changes during the Pliocene and possibly as recently as the Pleistocene. Although both dispersal and vicariance have played important roles in the evolution of the genus within the region, the latter has been particularly responsible for diversification of Charaxes in Wallacea. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 457–481.  相似文献   

16.
The South Pacific archipelago of Fiji is characterized by a predominantly Indo‐Malesian flora and fauna. We provide a first systematic study on Fiji's tateid gastropods – previously classified as Hydrobiidae – describing 18 new species, combining morphological, anatomical, and molecular data. The molecular phylogeny of tateid gastropods based on 16S rRNA and cytochrome c oxidase subunit I (COI) showed that the species from Fiji were closer related to New Zealand than to Australian or New Caledonian taxa, which is rather exceptional. Performing an ancestral range reconstruction we inferred the colonization history across the two main islands. The radiation had its origin in southern Viti Levu, with a subsequent dispersal over the western and central parts of the island. The chronology of the radiation over eastern Viti Levu and Vanua Levu remained unresolved because of incomplete lineage sorting, a phenomenon typical for young radiations. © 2014 The Linnean Society of London  相似文献   

17.
18.
Sicydiinae gobies have an amphidromous life cycle. Adults grow, feed, and reproduce in rivers, while larvae have a marine dispersal phase. Larvae recruit back to rivers and settle in upstream habitats. Within the Sicydiinae subfamily, the Sicyopterus genus, one of the most diverse (24 species), is distributed in the tropical islands of the Indo‐Pacific. One of the characters used to determine Sicyopterus species is the upper lip morphology, which can be either smooth, crenulated, or with papillae, and with (2 or 3) or without clefts. The mouth is used as a secondary locomotor organ along with the pelvic sucker. It is thus strongly related to the climbing ability of species and is of major importance for the upstream migration and the colonization of insular freshwater systems. The mouth also has an important role in the feeding mechanism of these herbivorous species. In this paper, we have established a molecular phylogeny of the genus based on the 13 mitochondrial protein‐coding genes to discuss the relationship between 18 Sicyopterus species. There is a well‐supported dichotomy in the molecular phylogeny of the Sicyopterus genus and this separation into two clades is also morphologically visible, with the distinction of species with three clefts and species with 0 or 2 clefts on the upper lip. The mouth morphology can thus be separated with regard to the molecular phylogeny obtained. The evolution of the mouth morphology is discussed in terms of the adaptation of the Sicyopterus genus to settlement and life in tropical insular river systems.  相似文献   

19.
Aim In this study, I examined the relative contributions of geography and ecology to species diversification within the genus Nerita, a prominent clade of marine snails that is widely distributed across the tropics and intertidal habitats. Specifically, I tested whether geographical patterns of speciation correspond primarily to allopatric or sympatric models, and whether habitat transitions have played a major role in species diversification. Location Indo‐West Pacific, eastern Pacific, Atlantic, tropical marine intertidal. Methods I used a previously reconstructed molecular phylogeny of Nerita as a framework to assess the relative importance of geographical and ecological factors in species diversification. To evaluate whether recently diverged clades exhibit patterns consistent with allopatric or sympatric speciation, I mapped the geo‐graphical distribution of each species onto the species‐level phylogeny, and examined the relationship between range overlap and time since divergence using age–range correlation analyses. To determine the relative contribution of habitat transitions to divergence, I traced shifts in intertidal substrate affinity and vertical zonation across the phylogeny using parsimony, and implemented randomization tests to evaluate the resulting patterns of ecological change. Results Within the majority of Nerita clades examined, age–range correlation analysis yielded a low intercept and a positive slope, similar to that expected under allopatric speciation. Approximately 75% of sister species pairs have maintained allopatric distributions; whereas more distantly related sister taxa often exhibited complete or nearly complete geographical overlap. In contrast, only 19% of sister species occupy distinct habitats. For both substrate and zonation, habitat transitions failed to concentrate towards either the tips or the root of the phylogeny. Instead, habitat shifts have occurred throughout the history of Nerita, with a general transition from the lower and mid‐littoral towards the upper and supra‐littoral zones, and multiple independent shifts from hard (rock) to softer substrates (mangrove, mud and sand). Main conclusions Both geography and ecology appear to have influenced diversification in Nerita, but to different extents. Geography seems to play a principal role, with allopatric speciation driving the majority of Nerita divergences. Habitat transitions appear insignificant in shaping the early and recent history of speciation, and promoting successive diversification in Nerita; however, shifts may have been important for respective divergences (i.e. those that correspond to the transitions) and enhancing diversity throughout the clade.  相似文献   

20.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号