首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach involving the comparative analysis of proteins of crude cell lysate pellets from isogenic strains of Saccharomyces cerevisiae distinguished by their prion composition permitted us to identify a large group of prion-associated proteins in yeast cells. 35 proteins whose aggregation state depends on prion content have been identified by 2D-electrophoresis followed by the MALDI analysis of a recipient [psi ] strain and of [PSI +] cytoductant. Approximately half of these proteins belong to functional groups of chaperones and enzymes involved in glucose metabolism. Other proteins are involved in translation, stress response and protein degradation. The data obtained are compared with the results of other groups who used different approaches to detect proteins involved in prion aggregates.  相似文献   

2.
Mouse c-Abl type IV and human BCR/ABL proteins have been expressed in insect cells using the baculovirus system. The proteins were expressed as full-length polypeptides as judged by electrophoresis in denaturing gels. They were identified by immunoprecipitation and immunoblotting with antibodies against ABL peptides and, for BCR/ABL, against a BCR peptide. In these immunoprecipitates both proteins gave autophosphorylation principally on tyrosine. Both proteins were active tyrosine kinases, phosphorylating a variety of tyrosine-containing substrates. In fresh extracts both proteins contained phosphotyrosine as shown by Western blots with antiphosphotyrosine antibodies. Partial purification could be achieved readily using ion exchange columns, and the BCR/ABL protein, p210BCR/ABL, could be further purified to near-homogeneity using an antiphosphotyrosine column. Both enzymes required a divalent metal ion for activity. At low concentrations of ATP (2 μM) and with angiotensin II as substrate both enzymes were activated by Mn2+ or by Mg2+. No major differences in catalytic properties were found between the two isolated enzymes in solution. The oncogenic properties of p210BCR/ABL may be due to its different subcellular location, or to the presence of an intracellular inhibitor of c-Abl that does not inhibit BCR/ABL, or to altered substrate-specificity such that it can phosphorylate a unique substrate which is not recognised by c-Abl.  相似文献   

3.
4.
Conditions for the assay of individual components of the bacterial phosphotransferase system (PTS) are presented wich offer two important improvements over earlier methods. First, a lactate dehydrogenase-coupled assay for phosphocarrier proteins (HPr, FPr, and Factor IIIGle) which permits their measurement in either pure or partially pure form was developed. Quantitation by this assay does not rely on the level of activity of the enzymes used. Second, conditions under which Enzyme I activity was proportional to enzyme concentration are given. With these methods levels of PTS components have been measured that are 2-to 20-fold higher than those previously reported. These levels can now account for various PTS functions measured in vivo. Further, we have shown that the phosphocarrier proteins HPr and Factor IIIGle are substrates for their respective enzymes which show typical Michaelis-Menten kineties. In addition, a method for the partial purification of Enzyme II-BGle essentially free of Enzyme IIMan activity is presented.  相似文献   

5.
THERE are two biochemical systems which probably evolved before the development of accurate polynucleotide-specified protein synthesis: these are the system for polynucleotide replication and the machinery of protein synthesis itself1, 2. Before accurately specified proteins became available, these processes were perhaps catalysed by polynucleotide enzymes. Both tRNA and rRNA, which can be viewed as polynucleotide enzymes, have persisted as indispensable components of the contemporary apparatus. This has led me to wonder whether polynucleotide enzymes might still be operative in DNA replication. Moreover, in view of the complexity which would have been required for even a rudimentary form of protein synthesis, it seems unlikely that tRNA and rRNA arose by chance in a single evolutionary step1. More probably they have evolved from the replicative machinery for polynucleotides and thus it seems likely that the machinery of DNA replication may have many features in common with the polynucleotide components of protein synthesis.  相似文献   

6.
Two soluble Ca2+-dependent protein kinases (enzymes I and II) have been extensively purified from silver beet leaf tissue by means of a protocol involving batch-wise elution from DEAE-cellulose, Ca2+-dependent binding to phenyl-Sepharose, gradient elution from DEAE-Sephacel, gel filtration and binding to Cibacron F3GA-Sepharose CL-6B. Protein kinases I and II are resolved on gradient elution from DEAE-Sephacel and are further distinguished by their different Km values for ATP and large differences in relative rates of phosphorylation of histone H1, casein and bovine serum albumin (the latter two proteins are relatively poor substrates for enzyme II but not enzyme I). Both enzymes have similar molecular weights as determined from gel filtration (56000 ± 2000 and 57000 ± 3000 for enzymes I and II, respectively). Both enzymes are absolutely dependent on free Ca2+ for activity with maximal histone H1 kinase activity being obtained at 0.5 μM free Ca2+. A millimolar concentration of Mg2+ is required in addition to a micromolar concentration Ca2+ for maximal activity. Both enzymes specifically phosphorylate serine residues of histone H1, are thiol activated and are inhibited by lanthanides and a range of calmodulin antagonists and inhibitors of protein kinase C.  相似文献   

7.
It is now widely accepted that actions of intracellular Ca2+ are mediated by a four-domain Ca2+-binding protein, calmodulin. Brain is especially rich in calmodulin, containing about 400 mg (24 μmol) of EGTA-extractable calmodulin per kg of brain. However, only a fraction of the above amount is required for the calmodulin-activated enzymes and most of the rest may be assigned to calmodulin-binding proteins, proteins which are apparently devoid of enzyme activities but undergo Ca2+-dependent associations with calmodulin. Several of such proteins have been recently discovered in brain. These include a heat-labile 80 K phosphodiesterase inhibitor protein (calcineurin), a heat-stable 70 K phosphodiesterase inhibitor protein, a 50 K protein, myelin basic protein, tubulin, microtubule τ (tau) factor, a spectrin-like doublet protein (240 plus 235 K) (calspectin; fodrin) and a particle-associated 155 K protein.Functions of these calmodulin-binding proteins have not been fully elucidated yet. Some proteins may be calmodulin-regulated enzymes catalyzing yet unknown biochemical reactions, e.g. a protein phosphatase activity was found for calcineurin. Some proteins may interact with contractile elements or cytoskeleton of the cell, e.g. τ factor and calspectin interacted with tubulin and F-actin, respectively and tubulin itself is a calmodulin-binding protein. So, interesting possibilities are the regulation of the functions of cytoskeleton by calmodulin through these calmodulin-binding proteins. Regulation of microtubule assembly by Ca2+-dependent binding of calmodulin to tubulin and/or τ factor and possible involvement of calspectin in the mechanism regulating axonal transport of neuronal proteins have been suggested. Thus, the exploration of the regulating functions of Ca2+/calmodulin in brain depends largely upon the further study of the properties of these calmodulin-binding proteins.  相似文献   

8.
ABSTRACT:?

Fish metabolism needs special enzymes that have maximum activity at very different conditions than their mammalian counterparts. Due to the differences in activity, these enzymes, especially cold-adapted proteases, could be used advantageously for the production of some foods. In addition to the enzymes, this review describes some other unique fish polypeptides such as antifreeze proteins, fluorescent proteins, antitumor peptides, antibiotics, and hormones, that have already been cloned and used in food processing, genetic engineering, medicine, and aquaculture. Recombinant DNA technology, which allows these biological molecules to be cloned and overexpressed in microorganisms is also described, highlighting innovative applications. The expected impact of cloning fish proteins in different fields of technology is discussed.  相似文献   

9.
The double-isotopic labelling technique was used to identify comprehensively proteins involved in α-glucan catabolism in Klebsiella pneumoniae NCTC 9633. Cells were grown with either glycerol in the presence of 3H-leucine or with glycerol plus maltose in the presence of 14C-leucine. Each labelled culture was then fractionated into the main subcellular components, i.e. the cytoplasm, periplasm, cytoplasmic and outer membrane. Corresponding fractions derived from 3H-labelled and 14C-labelled cells were combined, and the proteins were analyzed by polyacrylamide gel electrophoresis under denaturing conditions. Gel slices were then counted for 3H- and 14C-radioactivity, a positive deviation from the standard 14C/3H ratio being evidence for the presence of a protein specifically induced by maltose in the culture medium. The protein pattern thus obtained was compared with the properties of proteins comprising a similar pathway for maltodextrin utilization in Escherichia coli K-12. Ample information which has been obtained mainly by genetic analysis is available about maltodextrin-utilizing enzymes in E. coli K-12.
  1. Cytoplasm. Neither amylomaltase nor maltodextrin phosphorylase, well-known soluble enzymes, were identifiable by the double-labelling technique, presumably because these enzymes constitute only a very minor portion of all soluble proteins in the cytoplasm.
  2. Periplasm. A prominent protein with a mass of 43000 daltons (43 kD) was found similar to the maltose-binding protein of E. coli K-12 (44 kD).
  3. Cytoplasmic membrane. At least 2 proteins with a mass between 40 and 50 kD were detected, minor proteins were seen at ≈ 15 and ≈ 20 kD. One or 2 of the proteins may function as a permease catalyzing the active transport of maltodextrins.
  4. Outer membrane. The major protein had a mass of 55 kD, other proteins were found with ≈ 18, ≈48, and ≈140 kD. The major protein may have the same function as the maltodextrin pore protein in E. coli K-12 (55 kD), because K. pneumoniae could grow on 10 μM maltose at practically the same rate as on 10 mM maltose. The 140 kD protein is pullulanase.
  相似文献   

10.
The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74‐compound library of known Nudix enzyme substrates. We found substrates for four enzymes with kcat/Km values >10,000 M?1 s?1: Q92EH0_LISIN of Listeria innocua serovar 6a against ADP‐ribose, Q5LBB1_BACFN of Bacillus fragilis against 5‐Me‐CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8‐oxo‐dATP and 3'‐dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty‐two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported kcat/Km values exhibited against these canonical substrates are well under 105 M?1 s?1. By contrast, several Nudix enzymes show much larger kcat/Km values (in the range of 105 to >107 M?1 s?1) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810–1822. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

11.
The production of stable isotope-labeled proteins is critical in structural analyses of large molecular weight proteins using NMR. Although prokaryotic expression systems using Escherichia coli have been widely used for this purpose, yeast strains have also been useful for the expression of functional eukaryotic proteins. Recently, we reported a cost-effective stable isotope-labeled protein expression using the hemiascomycete yeast Kluyveromyces lactis (K. lactis), which allow us to express exogenous proteins at costs comparable to prokaryotic expression systems. Here, we report the successful production of highly deuterated (>90 %) protein in the K. lactis system. We also examined the methyl-selective 1H, 13C-labeling of Ile, Leu, and Val residues using commonly used amino acid precursors. The efficiency of 1H- 13C-incorporation varied significantly based on the amino acid. Although a high level of 1H-13C-incorporation was observed for the Ile δ1 position, 1H, 13C-labeling rates of Val and Leu methyl groups were limited due to the mitochondrial localization of enzymes involved in amino acid biosynthesis and the lack of transporters for α-ketoisovalerate in the mitochondrial membrane. In line with this notion, the co-expression with branched-chain-amino-acid aminotransferase in the cytosol significantly improved the incorporation rates of amino acid precursors. Although it would be less cost-effective, addition of 13C-labeled valine can circumvent problems associated with precursors and achieve high level 1H, 13C-labeling of Val and Leu. Taken together, the K. lactis system would be a good alternative for expressing large eukaryotic proteins that need deuteration and/or the methyl-selective 1H, 13C-labeling for the sensitive detection of NMR resonances.  相似文献   

12.
Dimitri A. Svistunenko 《BBA》2005,1707(1):127-155
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the π-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; αTyr42, αTrp14, βTrp15, βCys93, (αTyr24−αHis20), all in the α- and β-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

13.
Lanthanides (Ln3+) that are Rare Earth Elements, until recently thought to be biologically inert, have recently emerged as essential metals for activity and expression of a special type of methanol dehydrogenase, XoxF. As XoxF enzyme homologs are encoded in a wide variety of microbes, including microbes active in important environmental processes such as methane and methanol metabolism, Ln3+ may represent some of the key biogeochemical drivers in cycling of carbon and other elements. However, significant gaps in understanding the role of Ln3+ in biological systems remain as the functions of most of the proteins potentially dependent of Ln3+ and their roles in specific metabolic networks/respective biogeochemical cycles remain unknown. Moreover, enzymes dependent on Ln3+ but not related to XoxF enzymes may exist, and these so far have not been recognized. Through connecting the recently uncovered genetic divergence and phylogenetic distribution of XoxF-like enzymes and through elucidation of their activities, metal and substrate specificities, along with the biological contexts of respective biochemical pathways, most parsimonious scenarios for their evolution could be uncovered. Generation of such data will firmly establish the role of Ln3+ in the biochemistry of Life inhabiting this planet.  相似文献   

14.
In vivo phosphorylation of muscle proteins has been studied by incorporation of [32P]phosphate with emphasis placed upon the phosphorylation of glycolytic enzymes. Of the approximately 25 soluble proteins resolved by two-dimensional electrophoresis that contain significant 32P, phosphofructokinase was the sole glycolytic enzyme identified as a phosphoprotein. The extent of phosphorylation found for this enzyme was the same as determined previously for purified phosphofructokinase and was about the same as the extent of phosphorylation of phosphorylase in resting muscle. Subsequent partial purification of several glycolytic enzymes confirmed the absence of significant amount of phosphate. However, phosphoglycerate mutase contained small amounts of covalently bound 32P that was exchangeable with 3-phosphoglycerate and therefore, most likely was incorporated during the catalytic reaction cycle. Analogous results were obtained for phosphoglucomutase. Both mutases were also phosphorylated at the same sites by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

15.
1. The metabolism of chromosomal proteins has been studied in the pancreas, liver, and kidney of adult mice (a) by measuring the rates of glycine-N15 incorporation into histones and residual chromosome fractions, and (b) by measuring the extent to which N15, once incorporated into chromosomal proteins, is retained. 2. The uptake of isotopic nitrogen by these nuclear constituents was compared with that of protein fractions prepared from the cytoplasm by differential centrifugation in sucrose solutions. One such fraction, which comprises the bulk of the ribosenucleoprotein of the cell sediments as a pellet on high speed centrifugation. The supernatant remaining after this centrifugation is a fraction which, in the pancreas, is rich in the secretory enzymes synthesized by the cell. 3. A comparison of the rates of glycine-N15 uptake shows that cytoplasmic ribonucleoprotein is the most active of the protein fractions analyzed. In the pancreas it meets the conditions required of a precursor for the secretory enzymes of the supernate. 4. In all tissues considered the rates of glycine-N15 uptake into histone and residual chromosome fractions are lower, that for histone being the lowest of any of the protein components considered and that for residual protein approximating the over-all rate for cytoplasmic protein. 5. The effects of feeding and fasting upon glycine-N15 incorporation have been studied. In the pancreas, feeding causes a sharp increase in N15 uptake by the mixed tissue proteins and by the nucleoprotein and supernatant protein of the cytoplasm. There is a parallel increase in N15 uptake by the chromosomal constituents—histone and residual protein. 6. A parallelism between N15 uptake in cytoplasmic and chromosomal proteins is also observed in the liver and kidney when over-all protein metabolism is altered by feeding and fasting. 7. The responsiveness of the histones and residual proteins to changes in the environment has also been demonstrated in N15 retention experiments. The loss of isotope once incorporated into chromosomal proteins is much more rapid in fed than in fasted animals.  相似文献   

16.
Superoxide (O2?) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O2? disrupts metabolism, but to date only a small family of [4Fe‐4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O2? also poisons a broader cohort of non‐redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O2? both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O2? differs substantially. When purified enzymes were damaged by O2? in vitro, activity could be completely restored by iron addition, indicating that the O2? treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O2? stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O2? stress. These results support a model in which O2? repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O2? stress.  相似文献   

17.
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7.The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs.Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate.We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.  相似文献   

18.
Mono-ADP-ribosylation is the enzymatic transfer of ADP-ribose from NAD+ to acceptor proteins catalyzed by ADP-ribosyltransferases. Using m-aminophenylboronate affinity chromatography, 2D-gel electrophoresis, in-gel digestion and MALDI-TOF analysis we have identified eight in vitro ADP-ribosylated proteins in Streptomyces coelicolor, which can be classified into three categories: (i) secreted proteins; (ii) metabolic enzymes using NAD+/NADH or NADP+/NADPH as coenzymes; and (iii) other proteins. The secreted proteins could be classified into two functional categories: SCO2008 and SC05477 encode members of the family of periplasmic extracellular solute-binding proteins, and SCO6108 and SC01968 are secreted hydrolases. Dehydrogenases are encoded by SC04824 and SC04771. The other targets are GlnA (glutamine synthetase I., SC02198) and SpaA (starvation-sensing protein encoded by SC07629). SCO2008 protein and GlnA had been identified as ADP-ribosylated proteins in previous studies. With these results we provided experimental support for a previous suggestion that ADP-ribosylation may regulate membrane transport and localization of periplasmic proteins. Since ADP-ribosylation results in inactivation of the target protein, ADP-ribosylation of dehydrogenases might modulate crucial primary metabolic pathways in Streptomyces. Several of the proteins identified here could provide a strong connection between protein ADP-ribosylation and the regulation of morphological differentiation in S. coelicolor.  相似文献   

19.
Sirtuins are ancient proteins widely distributed in all lifeforms of earth. These proteins are universally able to bind NAD+, and activate it to effect ADP-ribosylation of cellular nucleophiles. The most commonly observed sirtuin reaction is the ADP-ribosylation of acetyllysine, which leads to NAD+-dependent deacetylation. Other types of ADP-ribosylation have also been observed, including protein ADP-ribosylation, NAD+ solvolysis and ADP-ribosyltransfer to 5,6-dimethylbenzimidazole, a reaction involved in eubacterial cobalamin biosynthesis. This review broadly surveys the chemistries and chemical mechanisms of these enzymes.  相似文献   

20.
Leishmaniasis 1 1These authors contributed equally.Communicated by Ramaswamy H. SarmaCommunicated by Ramaswamy H. Sarma is an endemic disease mainly caused by the protozoan Leishmania donovani (Ld). Polyamines have been identified as essential organic compounds for the growth and survival of Ld. These are synthesized in Ld by polyamine synthesis pathway comprising of many enzymes such as ornithine decarboxylase (ODC), spermidine synthase (SS), and S-adenosylmethionine decarboxylase. Inhibition of these enzymes in Ld offers a viable prospect to check its growth and development. In the present work, we used computational approaches to search natural inhibitors against ODC and SS enzymes. We predicted three-dimensional structures of ODC and SS using comparative modeling and molecular dynamics (MD) simulations. Thousands of natural compounds were virtually screened against target proteins using high throughput approach. MD simulations were then performed to examine molecular interactions between the screened compounds and functional residues of the active sites of the enzymes. Herein, we report two natural compounds of dual inhibitory nature active against the two crucial enzymes of polyamine pathway of Ld. These dual inhibitors have the potential to evolve as lead molecules in the development of antileishmanial drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号