首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of the ascomycete pathogen Sclerotinia sclerotiorum sampled from a canola field were analysed using microsatellite markers. Fifty isolates were collected from ascospore-infested canola petals and, later in the season, another 55 isolates were obtained from stem lesions; these isolates were used to compare inoculum and disease-causing populations. Fifty-five unique haplotypes were identified, with gene diversity ranging from 0.40 to 0.71. Genotypic diversity was higher in the inoculum population than it had been in the previous year, but analysis of molecular variance (AMOVA) showed that less than 10% of the variation was attributable to differences between the 2 years. Genotypic disequilibrium measures were consistent with the occurrence of both clonal reproduction and out-crossing. There was no significant population subdivision between the ascospore and stem-lesion populations, as measured with fixation indices (R(ST) = 0.015, p = 0.90) and AMOVA, suggesting that there are no genetically defined subgroups of isolates more likely to proceed from petal colonization to cause stem infection. This might be because S. sclerotiorum possesses wide-ranging pathogenicity mechanisms that account for the lack of host specificity observed to date.  相似文献   

2.
In plant species, when clonal growth produces a patchy structure and flowering ramets are clustered, the amount of pollen contributing to reproductive success is often regulated by pollinator efficiency and geitonogamy. The spatial population structure may influence reproductive success. We examined the clonal structure, the spatial ramet distribution, and their combined effects on fruit set in a natural population of the insect-pollinated, self-incompatible clonal herb, Convallaria keiskei, in northern Japan. The number of shoots, flowers, and fruits in 1-m2 quadrats were counted at every 5 m grid point in an established 100 × 90-m study plot. From all the quadrats where shoots existed, leaf samples were collected for allozyme analysis. Using the two spatial parameters of flowering ramet densities and genotypes, we then constructed individual-based fruit-set models. A total of 236 quadrats contained shoots, and 135 contained flowering ramets, which indicated expanded distribution of this plant throughout the study plot, while shoots, flowers and fruits all showed clustering distributions. Allozyme analysis of 282 samples revealed 94 multilocus genotypes. The largest clone extended to more than 40 m, whereas 56 genotypes were detected in only one sample. Several large clones and many small clones were distributed close to each other. Fine-scale spatial modelling revealed that the neighbouring flower numbers of different genotypes, compared with local genet or flower diversity, more influenced fruit set, in which the range of the neighbour was 14.5 m. These findings indicate that the compatible pollen dispersed by insect pollinators has a significant effect on sexual reproduction, in this C. keiskei population. Consequently, the spatial structure, which includes both genet distribution and clonal expansion by ramets, had a significant effect on pollination success.  相似文献   

3.
A total of 2035 Mycosphaerella graminicola strains collected from 16 geographic locations on four continents were assayed for the mating type locus. RFLP fingerprints were used to identify clones in each population. At the smallest spatial scale analyzed, both mating types were found among fungal strains sampled from different lesions of the same leaf as well as from different pycnidia in the same lesion. At larger spatial scales, the two mating types were found at equal frequencies across spatial scales ranging from several square meters to several thousand square kilometers. Though the absolute frequencies of the two mating types sometimes varied for different sampling units within the same spatial scale in the hierarchy (plots within a field, fields within a country, or different continents of the world), none of the differences were statistically significant from the null hypothesis of equal frequencies for the two mating types. The evolutionary forces likely to maintain the even distribution of the two mating types in this pathogen were discussed.  相似文献   

4.
Spatial patterns of Meloidogyne incognita, Tylenchorhynchus claytoni, Helicotylenchus dihystera, and Criconemella ornata were analyzed using Hill''s two-term local quadrat variance method (TTLQV), spectral analysis, and spatial correlation. Data were collected according to a systematic grid sampling plan from seven tobacco fields in North Carolina. Different estimates of nematode cluster size were obtained through TTLQV and spectral analysis. No relationship was observed between either estimate and nematode species, time of sampling (spring vs. fall), or mean density. Cluster size estimates obtained from spectral analysis depended on sampling block size. For each species examined, spatial correlations among nematode population densities were greater within plant rows than across rows, indicating that clusters were ellipsoidal with long axes oriented along plant rows. Analysis of mean square errors indicated that significant gains in sampling efficiency resulted from orienting the long axis of sampling blocks across plant rows. Spatial correlation was greater in the fall than in spring and was greater among 1 × 1-m quadrats than among 3 × 3-m quadrats.  相似文献   

5.
The degree of aggregation of lettuce plants infected by aster yellows phytoplasma (AYP) was investigated in 12 fields from three experiments. Position of diseased and healthy plants was mapped in a 6–9×12-m section of each field; for most analyses, fields were divided into 10-plant quadrats. Mean disease incidence (p) ranged from 0.01 to 0.30. The frequency of diseased plants was described by the beta-binomial distribution, with an index of aggregation (θ) ranging from 0 to 0.17, positively correlated withp, and generally increasing over time within a field. Distance-class analysis revealed a core-cluster size of only a few plants. However, spatial autocorrelations ofp between quadrats were not significant, indicating that the scale of spatial pattern was small, generally less than 10 plants. An overall measure of aggregation was given by the slope parameter of the binary form of the power law, in which the log of the calculated variance is regressed on the log of the theoretical variance for a binomial distribution. The slope was 1.18 and significantly different from 1. Results for this “simple-interest” disease are interpreted in relation to the persistent transmission of AYP by its aster leafhopper vector.  相似文献   

6.
The performance of one clone of the pea aphid,Acyrthosiphon pisum (Harris), was assessed on 37 different cultivars and species ofPisum L. In addition, random samples of 36 pea aphid clones collected on alfalfa and clover were tested on a selection of fivePisum sativum L. cultivars. Aphid performance was evaluated in terms of the mean relative growth rate (MRGR) during the first five days of life or other life history variables. The MRGR of the first-mentioned pea aphid clone differed little between cultivars. No significant differences in MRGR were found between wild and cultivatedPisum species or between modern and oldP. sativum cultivars. There was considerable variation in host adaptation among the 36 pea aphid clones within each sampled field. The pea aphid clones showed no consistent pattern in performance on four of the five pea cultivars i.e. there was a significant pea aphid genotype —pea genotype interaction. On one of the cultivars all clones performed well. Pea aphid clones collected from red clover generally performed relatively poorly on pea cultivars, in contrast to the pea aphid clones collected on alfalfa. There was no difference in performance between the two pea aphid colour forms tested. Possible reasons for the high variation and the observed adaptation patterns are discussed. The fact that all clones were collected in two adjacent fields indicates thatA. pisum shows high local intraspecific variability in terms of host adaptation.  相似文献   

7.
Genetic stability in a population of a plant pathogenic fungus over time   总被引:10,自引:1,他引:9  
Collections of the plant pathogenic fungus Mycosphaerella graminicola were made from the same field of wheat over a 3-year period. The field was planted with small plots containing four varieties of wheat grown in pure stand and in all possible two-, three- and four-way mixtures. In each year, the wheat field was recolonized by a local source of inoculum of unknown origin. Allele frequencies at 10 RFLP loci were compared at two different times within a growing season and over the 3-year period. No significant differences in allele frequencies were found for any of the RFLP loci over any of the time periods. DNA fingerprints were used to identify clones produced by asexual reproduction. Genotypic diversity based on the frequency of each clone was compared for each collection. No significant changes in genotypic diversity were found within a year or between years. Identical genotypes were found in the field at different times within a season, but no clones were conserved between years. No clone existed in a high frequency in any year, suggesting that selection for particular asexual lineages was weak. The founding population each year probably originated from wind-borne ascospores of the teleomorph, which may exist as an indigenous population on alternative hosts, such as Poa annua (annual bluegrass).  相似文献   

8.
We studied the microspatial population structure of the perennial tussock grass, Hyparrhenia diplandra (Poaceae), a facultative agamospermous species of West African savannahs. The microspatial population structure of H. diplandra was investigated by choosing two 100-m(2); quadrats at random from which all individuals were mapped. The genotype of every individual was determined using two highly polymorphic microsatellite loci. A chloroplast locus was also used to investigate the role of seed dispersal on the genetic structure of populations. The genetic diversity index (0.85) was high for a clonal species. Significant genetic differentiation over short distances was detected by F statistics, and spatial autocorrelation analyses within both quadrats showed significant isolation-by-distance patterns, both with the cytoplasmic locus and the nuclear loci. Some clones formed large patches (up to 5 m in diameter) whereas others were more scattered. However, the genetic differentiation between quadrats was much higher when studied with the cytoplasmic locus than with the nuclear loci, indicating that gene flow via pollen, but not seeds, may frequently occur between quadrats. The maintenance of genetic diversity in this facultative agamospermous species most likely results from several factors, such as low seed dispersal ability, nonnegligible gene flow through pollen, and selective pressures induced by regularly occurring fires in this ecosystem.  相似文献   

9.
Clonal plants have the ability to spread and survive over long periods of time by vegetative growth. For endangered species, the occurrence of clonality can have significant impacts on levels of genetic diversity, population structure, recruitment, and the implementation of appropriate conservation strategies. Here we␣examine clone structure in three populations of Ambrosia pumila (Nutt.) Gray (Asteraceae), a federally endangered clonal species from southern California. Ambrosia pumila is a perennial herbaceous species spreading from a rhizome, and is frequently found in dense patches of several hundred stems in a few square meters. The primary habitat for this species is upper terraces of rivers and drainages in areas that have been heavily impacted by anthropogenic disturbances and changing flood regimes. RAPD markers were employed to document the number and distribution of clones within multiple 0.25 m2 plots from each of three populations. Thirty-one multi-locus genotypes were identified from the 201 stems sampled. The spatial distribution of clones was limited with no genotypes shared between plots or populations. Mean clone size was estimated at 9.10 ramets per genet. Genets in most plots were intermingled, conforming to a guerrilla growth form. The maximum genet spread was 0.59 m suggesting that genets can be larger than the sampled 0.25 m2 plots. Spatial autocorrelation analysis found a lack of spatial genetic structure at short distances and significant structure at large distances within populations. Due to the occurrence of multiple genets within each population, the limited spread of genets, and a localized genetic structure, conservation activities should focus on the maintenance of multiple populations throughout the species range.  相似文献   

10.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

11.
Surveys of 11 watermelon fields throughout production areas of this crop in southern and central regions in Tunisia were conducted in 2007 to determine the aetiology and distribution of watermelon vine decline. Monosporascus cannonballus was isolated from diseased roots in all surveyed fields. All the isolates were identified according to morphological features and confirmed by amplification of a fragment of the ITS region with specific primers. Ascospores of M. cannonballus were recovered from soil in all watermelon fields surveyed and the average population densities ranged from 3.65 to 10.14 ascospores per g of soil. Multiple linear regression analysis revealed that only four of the crop and soil factors evaluated had a significant correlation with ascospore density at the end of the growing season: vertisol vs. other soils, disease incidence, percentage of clay and pH. The pH of the soil showed a strong significant negative linear relationship with ascospore density, while the other three factors correlated positively.  相似文献   

12.
Sphagnum (peatmoss) dominates huge areas of the Northern Hemisphere and acts as a significant carbon sink on a global scale, yet little is known about the genetic structure of Sphagnum populations. We investigated genetic structure within a population of the common peatmoss Sphagnum fuscum, to assess local patterns of genetic diversity and the spatial extent of clones. One hundred seventeen shoots were sampled from five transects in Fuglmyra, central Norway, and sequenced for three anonymous DNA regions. Five neighbourhood patches were marked along each transect, and from each patch, five stems were sampled for molecular analyses. Seventeen haplotypes could be distinguished and two major groups of haplotypes differed by 12 mutational steps. The two major haplotype groups differed significantly in microhabitat association along the distance to groundwater table and the pH gradients, indicating microhabitat differentiation. The haplotypes within these groups were all genetically similar, differing by one or two mutations. The most common haplotype occurred in four transects separated by 250-m distance. Most of the molecular variation in the population was found among transects, and within patches. Large dominating clones within each transect resulted in low variation explained by the among-patch-within-transect component of spatial structure. Mutation appears to account for a larger proportion of the population variation than recombination. Within the population, vegetative growth and asexual reproduction from gametophyte fragments dominate as the main reproductive mode.  相似文献   

13.
Two different strategies for molecular analysis of bacterial diversity, 16S rDNA cloning and denaturing gradient gel electrophoresis (DGGE), were combined into a single protocol that took advantage of the best attributes of each: the ability of cloning to package DNA sequence information and the ability of DGGE to display a community profile. In this combined protocol, polymerase chain reaction products from environmental DNA were cloned, and then DGGE was used to screen the clone libraries. Both individual clones and pools of randomly selected clones were analyzed by DGGE, and these migration patterns were compared to the conventional DGGE profile produced directly from environmental DNA. For two simple bacterial communities (biofilm from a humics-fed laboratory reactor and planktonic bacteria filtered from an urban freshwater pond), pools of 35–50 clones produced DGGE profiles that contained most of the bands visible in the conventional DGGE profiles, indicating that the clone pools were adequate for identifying the dominant genotypes. However, DGGE profiles of two different pools of 50 clones from a lawn soil clone library were distinctly different from each other and from the conventional DGGE profile, indicating that this small number of clones poorly represented the bacterial diversity in soil. Individual clones with the same apparent DGGE mobility as prominent bands in the humics reactor community profiles were sequenced from the clone plasmid DNA rather than from bands excised from the gel. Because a longer fragment was cloned (∼1500 bp) than was actually analyzed in DGGE (∼350 bp), far more sequence information was available using this approach that could have been recovered from an excised gel band. This clone/DGGE protocol permitted rapid analysis of the microbial diversity in the two moderately complex systems, but was limited in its ability to represent the diversity in the soil microbial community. Nonetheless, clone/DGGE is a promising strategy for fractionating diverse microbial communities into manageable subsets consisting of small pools of clones.  相似文献   

14.
Heterogeneity in eukaryotic and bacteria community structure in surface and subsurface sediment samples downgradient of the Banisveld landfill (The Netherlands) was studied using a culturing-independent molecular approach. Along a transect covering the part of the aquifer most polluted by landfill leachate, sediment was sampled at 1-m depth intervals, until a depth of 5.5 m, at four distances from the landfill. Two drillings were placed in a nearby clean area as a reference. Denaturing gradient gel electrophoresis banding patterns revealed high bacterial and eukaryotic diversity and complex community structures. Bacteria and eukaryotic community profiles in polluted samples grouped different from those in clean samples. Bacteria community profiles in surface samples clustered together and separately from subsurface community profiles. Subsurface bacteria profiles clustered in a location-specific manner. Eukaryotic community structure did not significantly relate to distance from the landfill or depth. No significant spatial autocorrelation of bacteria or eukaryotic communities was observed over 1-m depth intervals per sampling location. Spatial heterogeneity in sediment-associated bacterial communities appears to be much larger than in groundwater. We discuss how on the one hand, spatial heterogeneity may complicate the assessment of microbial community structure and functioning, while on the other it may provide better opportunities for natural attenuation.  相似文献   

15.
16.
B C Lamb  M Saleem  W Scott  N Thapa  E Nevo 《Genetics》1998,149(1):87-99
We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.  相似文献   

17.
Representational Difference Analysis (RDA) is an established technique used for isolation of specific genetic differences between or within bacterial species. This method was used to investigate the genetic basis of serovar-specificity and the relationship between serovar and virulence in Haemophilus parasuis. An RDA clone library of 96 isolates was constructed using H. parasuis strains H425(P) (serovar 12) and HS1967 (serovar 4). To screen such a large clone library to determine which clones are strain-specific would typically involved separately labelling each clone for use in Southern hybridisation against genomic DNA from each of the strains. In this study, a novel application of reverse Southern hybridisation was used to screen the RDA library: genomic DNA from each strain was labelled and used to probe the library to identify strain-specific clones. This novel approach represents a significant improvement in methodology that is rapid and efficient.  相似文献   

18.
Yushania niitakayamensis is distributed in Taiwan, south-west China and northern Philippines. In Taiwan, the species occurs in the central mountain ranges from 1500 to 3500 m in altitude. Morphological variation, especially in terms of plant height, is large, with plants ranging from 10 cm to 5 m in height. The species appears to spread mainly by rhizomes and flowers rarely, leading to the prediction that most populations are comprised of a single or a few clonal genotypes and that the observed morphological variation is primarily due to phenotypic plasticity. The purpose of the present study was to investigate the genetic structure of this species on Mt Hohuan in central Taiwan. Ten plants from a single clone and ten plants of unknown genetic background were surveyed at one site in order to select RAPD primers useful for clone identification. Plants at a second site were collected at 1-m intervals across a 50-m transect through the population. Plants at one extreme (exposed portion) of the transect were approximately 15–30 cm in height, whereas plants up to 410 cm in height were found at the other shaded end of the transect. Comparison of amplification profiles for 12 primers revealed that in contrast to our predictions of genetic uniformity, many samples had reproducibly different RAPD amplification profiles, with the 51 samples representing 31 clones. These data imply that the clone size is relatively small, and the population is actually highly diverse genetically. The genetic variation in this population may be due to a higher frequency of sexual reproduction during the evolutionary history of the species and/or a high somatic mutation rate for RAPD loci in clones of Yushania.  相似文献   

19.
Hämmerli A  Reusch TB 《Heredity》2003,91(5):448-455
Limited dispersal distances in plant populations frequently cause local genetic structure, which can be quantified by spatial autocorrelation. In clonal plants, three levels of spatial organization can contribute to positive autocorrelation; namely, the neighbourhood of (a) ramets, (b) clone fragments and (c) entire clones. Here we use data from an exhaustive sampling scheme on a clonal plant to measure the contribution of the neighbourhoods of each distinct clonal structure to total spatial autocorrelation. Four plots (256 grid points each) within dense meadows of the marine clonal plant Zostera marina (eelgrass) were sampled for clone structure with nine microsatellite markers ( approximately 80 alleles). We found significant coancestry (f(ij)), at all three levels of spatial organization, even when not allowing for joins between samples of identical genets. In addition, absolute values of f(ij) and the maximum distance with significant positive f(ij) decreased with the progressive exclusion of joins between alike genotypes. The neighbourhood of this clonal plant thus consists of three levels of organization, which are reflected in different kinship structures. Each of these kinship structures may affect the level of biparental inbreeding and the physical distance between flowering shoots and their outcrossing neighbourhood. These results also emphasize the notion that spatial autocorrelation crucially depends on the scale and intensity of sampling.  相似文献   

20.
The degree of phenotypic variation of the bacterial strains USDA 125-Sp, USDA 138 and USDA 138-SmBradyrhizobium japonicum a long time after introduction was studied in three experimental fields. A total of 54 phenotypic characters were analyzed by constructing a dendrogram based on an hierarchic classification. Strong similarities (92.6, 94 and 95%) were found between the isolates introduced into soil 8, 10 and 13 years ago and between their respectiveB. japonicum parental clones. The dendrogrammic analysis detected a small amount of phenotypic drift, however, between soil isolates and parental clones belonging to the same serogroup (selective effects were found to have generated 0 to 3.9% variation for the USDA 125-Sp inoculum introduced 8 years ago, and 3.2–3.5% after 10 and 13 years, respectively, for the USDA 138 and USDA 138-Sm bacterial inocula) and within the serogroup 125 soil isolates (2.7%). We found a similar evolution of serogroup 125 isolates when compared with parental clones conserved on slant agar at 4°C. When a drift was observed, the isolates from soil presented a lower activity for several enzymes and lower diversity compared with the parental clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号