首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mori T  Li Y  Hata H  Kochi H 《FEBS letters》2004,557(1-3):209-214
We previously reported the association of a novel Np95/ICBP90-like RING finger protein (NIRF) with a novel PEST-containing nuclear protein (PCNP). NIRF is a nuclear protein with a ubiquitin-like domain, a PHD finger, a YDG/SRA domain, Rb-binding motifs and a RING finger. In this study, we showed that NIRF has auto-ubiquitination activity, the hallmark of a ubiquitin ligase. PCNP was readily ubiquitinated in 293 and COS-7 cells, and NIRF ubiquitinated PCNP in vitro as well as in vivo. Considering that NIRF is implicated in cell cycle regulation, these findings suggest that NIRF and PCNP are a ubiquitin ligase and its substrate, respectively, and may constitute a novel signaling pathway with some relation to cell proliferation.  相似文献   

2.
NIRF is a RING finger protein with a ubiquitin-like domain, a PHD finger, a YDG/SRA domain, and a RING finger domain. Previous study showed that NIRF is a nuclear protein expressed in association with cell proliferation. In this study, we further characterized NIRF functions in cell cycle regulation. Flow cytometric analysis showed that overexpression of NIRF induced an increase in G1 phase cells. Immunoprecipitation and immunoblotting experiments showed that NIRF bound to the inactive Cdk2-cyclin E complex. There existed phosphorylated NIRF in cells, and dephosphorylated NIRF interacted with Cdk2. NIRF was phosphorylated by Cdk2 in vitro. These results suggest that NIRF may participate in the G1/S transition regulation.  相似文献   

3.
RNF151, a testis-specific RING finger protein, interacts with dysbindin   总被引:1,自引:0,他引:1  
RING finger proteins play important roles in spermatogenesis. Here, we report that a novel RING finger protein RNF151, with a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TRAF-type zinc finger domain, was exclusively expressed in the mouse testis and developmentally regulated during spermatogenesis. While RNF151 mRNA was present in round spermatids, its protein was expressed in elongating spermatids of the stage VIII-IX seminiferous tubules. The NLS together with the RING domain were necessary and sufficient for the nuclear localization of RNF151-EGFP in transfected cells. Yeast two-hybrid screening identified the physical interaction of mouse RNF151 and dysbindin, which was confirmed by the co-immunoprecipitation of the proteins and by their co-localization in intact cells. As dysbindin has lately been shown to be involved in membrane biogenesis and fusion, a key process for acrosome formation, we propose that RNF151 may play a role in acrosome formation.  相似文献   

4.
NIRF(Np95/ICBP90-like RING finger protein)是2002年发现的一种核蛋白,其功能涉及细胞增殖调节、蛋白多聚泛素化降解、细胞癌变进程控制等领域.已有研究报道,NIRF能与p53相互作用, NIRF本身也是一个高度调节蛋白,在细胞正常的生理状态下发挥泛素化E3连接酶的作用,结合p53并将其降解,但NIRF与p53结合的蛋白结合域目前尚不清楚.本文研究证明,NIRF能与p53结合成复合体参与泛素化蛋白降解途径,并测定出NIRF与p53结合的区域.为了检测NIRF的蛋白结合域,将空载体和NIRF缺失突变体质粒分别转染于HEK293细胞,蛋白表达水平通过Western印迹用两种抗体分别检测. 结果显示,所有的突变体都能在细胞中表达,并且两种抗体检测结果完全一致. 同时,免疫共沉淀技术用于进一步分析实验结果. 由于泛素化蛋白通常伴随蛋白酶体通路介导的降解,免疫共沉淀的蛋白纯化过程中用蛋白酶体抑制剂MG-132以抑制蛋白降解. 本研究结果显示,NIRF 通过PHD区域与p53形成复合体. 该复合体可能参与蛋白分选、蛋白降解、DNA修复以及细胞凋亡等一系列重要的细胞活动,从而形成与细胞增殖相关的新的信号通路,在肿瘤的发生发展中可能发挥某种程度的作用.  相似文献   

5.
The RING finger domain occurs in a wide variety of proteins involved in cellular regulation. The polymerase chain reaction was used to search for novel RING finger proteins, using primers derived from expressed sequence tags (ests). A cDNA encoding a novel RING finger protein expressed in brain, lung, breast, placenta, kidney, muscle, and germinal center B cells is described. The human gene is expressed in a variety of tumors, including anaplastic oligodendroglioma and maps to chromosome 10q24.3, a region showing frequent deletion or loss of heterozygosity in glioblastomas. It was therefore designated glioblastoma expressed RING finger protein (GERP). GERP contains an N-terminal RING finger, followed by two B-boxes and a coiled-coil, and thus belongs to the RBCC subfamily of RING finger proteins. The structure of this protein and its mapping to a locus thought to harbor tumor suppressor genes indicates that it may be a new tumor suppressor gene important in gliomas and other malignancies.  相似文献   

6.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in the mRNA processing and export and are post-translationally modified by methylation at arginine residues in their arginine-glycine-rich (RGG) domains. We screened the factors that can interact with the RGG domain of Npl3p only in the presence of Hmt1p with the two-hybrid system in Saccharomyces cerevisiae. An isolated clone, YIL079, encodes a novel RING finger protein that was not directly bound to Npl3p but associated with the N terminus of Hmt1p. Thus, we designated the gene product Air1p (arginine methyltransferase-interacting RING finger protein). Air1p inhibited the Hmt1p-mediated methylation of Npl3p in vitro. Overexpression of Air1p repressed the Hmt1p-dependent growth of cells. Since homology searches indicate that the YDL175 gene product has significant identity (45%) with Air1p, we designated the gene AIR2. Air2p also has a RING finger domain and was bound to Hmt1p. Although single disruption of either gene gave no effect on the cell growth, cells lacking Air1p and Air2p grew at an extremely slow rate with accumulated poly(A)(+) RNA in the nucleus. Thus, Air1p and Air2p may affect mRNA transport by regulating the arginine methylation state of heterogeneous nuclear ribonucleoproteins.  相似文献   

7.
RING finger protein 152 (RNF152) is a novel RING finger protein and has not been well characterized. We report here that RNF152 is a canonical RING finger protein and has E3 ligase activity. It is polyubiqitinated partly through Lys-48-linked ubiquitin chains in vivo and this phenomenon is dependent on its RING finger domain and transmembrane domain. RNF152 is localized in lysosomes and co-localized with LAMP3, a lysosome marker. Moreover, over-expression of RNF152 in Hela cells induces apoptosis. These results suggest that RNF152 is a lysosome localized E3 ligase with pro-apoptotic activities. It is the first E3 ligase identified so far that is involved in lysosome-related apoptosis.  相似文献   

8.
9.
Triad1 was recently identified as a nuclear RING finger protein, which is up-regulated during retinoic acid induced granulocytic differentiation of acute leukemia cells. Here we show that a cysteine-rich domain (C6HC), present in Triad1, is conserved in at least 24 proteins encoded by various eukaryotes. The C6HC consensus pattern C-x(4)-C-x(14-30)-C-x(1-4)-C-x(4)-C-x(2)-C-x(4)-H-x(4)-C defines this structure as the fourth family member of the zinc-binding RING, LIM, and LAP/PHD fingers. Strikingly, in 22 of 24 proteins the C6HC domain is flanked by two RING finger structures. We have termed the novel C6HC motif DRIL (double RING finger linked). The strong conservation of the larger tripartite TRIAD (two RING fingers and DRIL) structure indicates that the three subdomains are functionally linked and identifies a novel class of proteins.  相似文献   

10.
11.
While some intracellular bacterial and viral proteins secreted into host cell possess ubiquitin ligase (E3) activity for their profit, it has not been reported whether intracellular parasites secrete such molecules. We identified a gene that encodes a protein containing a secretory signal peptide and a RING finger domain in the intracellular protozoan parasite, Trypanosoma cruzi . This gene was specific to T. cruzi and was designated spring ( secretory p rotein with RING finger domain). An in vitro ubiquitination assay showed that SPRING possessed E3 activity in a RING finger domain-dependent manner. SPRING could utilize human ubiquitin-activating enzymes (E2), UbcH5 and UbcH13. Although SPRING was found to be a secretory protein, the signal peptide-cleaved mature form of SPRING was localized in the nucleus of host cells, indicating that SPRING may function in the host cell nuclei. Yeast two-hybrid screening identified 52 putative SPRING interactors in HeLa cells, suggesting that SPRING affects the stability or function of a number of host proteins. Furthermore, a co-immunoprecipitation assay showed that breast cancer-associated protein 3 interacted with SPRING, as well as being ubiquitinated by SPRING in vitro . These findings are the first to show that this protozoan parasite secretes an ubiquitin ligase-related protein into host cells.  相似文献   

12.
13.
14.
随着对NIRF(Np95/ICBP-90 like RING finger protein)研究的深入,其功能已涉及细胞癌变进程以及表观遗传学等领域. 近期研究显示,NIRF能与HBc (hepatitis B virus core protein )相互结合,但其对乙型肝炎病毒(HBV)抗原表达的影响尚不明确. 本文通过转染pAAV-HBV1.3质粒和高压水动力法尾静脉注射BALB/C小鼠,建立乙型肝炎病毒的细胞和动物模型,研究NIRF对乙型肝炎病毒抗原表达的影响. ELISA检测细胞上清和小鼠血清中HBsAg、HBeAg的分泌和表达情况,Western 印迹或免疫组化染色技术检测HBcAg. 结果显示,乙型肝炎病毒抗原分泌的细胞以及小动物模型建立成功,并且无论在体内外,NIRF都能对它们的表达起抑制作用,期待能为后续的HBV致病机理以及治疗药物的研究提供支持与帮助.  相似文献   

15.
RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95.  相似文献   

16.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

17.
Acute promyelocytic leukaemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and the retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex (termed ND10, Kr bodies, nuclear bodies, PML oncogenic domains or PODs) which is disrupted in the APL disease state. PML contains a number of characterized motifs including a Zn2+ binding domain called the RING or C3HC4 finger. Here we describe the solution structure of the PML RING finger as solved by 1H NMR methods at physiological pH with r.m.s. deviations for backbone atoms of 0.88 and 1.39 A for all atoms. Additional biophysical studies including CD and optical spectroscopy, show that the PML RING finger requires Zn2+ for autonomous folding and that cysteines are used in metal ligation. A comparison of the structure with the previously solved equine herpes virus IE110 RING finger, shows significant differences suggesting that the RING motif is structurally diverse. The role of the RING domain in PML nuclear body formation was tested in vivo, by using site-directed mutagenesis and immunofluorescence on transiently transfected NIH 3T3 cells. Independently mutating two pairs of cysteines in each of the Zn2+ binding sites prevents PML nuclear body formation, suggesting that a fully folded RING domain is necessary for this process. These results suggest that the PML RING domain is probably involved in protein-protein interactions, a feature which may be common to other RING finger domains.  相似文献   

18.
Abstract: To clarify the mechanism of cerebellar development, we have cloned a gene, named zic, encoding a zinc finger protein that is expressed abundantly in granule cells throughout development of the cerebellum. zic has a significant homology to the zinc finger domain of the Caenorhabditis elegans tra1 gene, the Drosophila cubitus interruptus Dominant gene, and the human GLI oncogene. An in situ hybridization study revealed that zic showed a restricted expression pattern in the granule cells and their putative precursor cells. It is also expressed at an early embryonic stage in the dorsal half of the neural tube. The expression pattern and nuclear localization were confirmed by immunohistochemical study. Furthermore, the bacterially expressed zic protein containing the zinc finger domains bound to the GLI -binding sequence. These findings suggest that zic is one of a number of nuclear factors involved in both differentiation in early development and maintenance of properties of the cerebellar granule cells.  相似文献   

19.
We report the identification and functional characterization of ariadne-1 (ari-1), a novel and vital Drosophila gene required for the correct differentiation of most cell types in the adult organism. Also, we identify a sequence-related gene, ari-2, and the corresponding mouse and human homologues of both genes. All these sequences define a new protein family by the Acid-rich, RING finger, B-box, RING finger, coiled-coil (ARBRCC) motif string. In Drosophila, ari-1 is expressed throughout development in all tissues. The mutant phenotypes are most noticeable in cells that undergo a large and rapid membrane deposition, such as rewiring neurons during metamorphosis, large tubular muscles during adult myogenesis, and photoreceptors. Occasional survivors of null alleles exhibit reduced life span, motor impairments, and short and thin bristles. Single substitutions at key cysteines in each RING finger cause lethality with no survivors and a drastic reduction of rough endoplasmic reticulum that can be observed in the photoreceptors of mosaic eyes. In yeast two-hybrid assays, the protein ARI-1 interacts with a novel ubiquitin-conjugating enzyme, UbcD10, whose sequence is also reported here. The N-terminal RING-finger motif is necessary and sufficient to mediate this interaction. Mouse and fly homologues of both ARI proteins and the Ubc can substitute for each other in the yeast two-hybrid assay, indicating that ARI represents a conserved novel mechanism in development. In addition to ARI homologues, the RBR signature is also found in the Parkinson-disease-related protein Parkin adjacent to an ubiquitin-like domain, suggesting that the study of this mechanism could be relevant for human pathology.  相似文献   

20.
Hepatitis B virus (HBV) core protein (HBc) is a major component of viral nucleocapsid and a multifunctional protein involved in viral maturation and release. It is unstable and present in cells at low level because of K96 lysine residue, which is a ubiquitin acceptor site. Np95/ICBP90-like RING finger protein (NIRF) has auto-ubiquitination activity which is the hallmark of a ubiquitin ligase. In the present study, ubiquitin ligase, NIRF, binds to HBc and leads to the proteasome-mediated degradation of HBc in vivo. NIRF down-regulates HBc protein level, resulting in the decrease of the amount of HBV particles in supernatant of HepG2.2.15 cells. However knockdown of NIRF significantly increases endogenous HBc protein level, leading to HBV release. The results reveal that NIRF interacts with HBc and promotes the degradation of HBc in vivo. The pathway of NIRF-mediated ubiquitin–proteasome affects the release of HBV particles by controlling the amounts of HBc. It indicates that NIRF may participate in the maturation of HBV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号