首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

2.
On inflamed endothelium selectins support neutrophil capture and rolling that leads to firm adhesion through the activation and binding of beta 2 integrin. The primary mechanism of cell activation involves ligation of chemotactic agonists presented on the endothelium. We have pursued a second mechanism involving signal transduction through binding of selectins while neutrophils tether in shear flow. We assessed whether neutrophil rolling on E-selectin led to cell activation and arrest via beta 2integrins. Neutrophils were introduced into a parallel plate flow chamber having as a substrate an L cell monolayer coexpressing E-selectin and ICAM-1 (E/I). At shears >/=0.1 dyne/cm2, neutrophils rolled on the E/I. A step increase to 4.0 dynes/cm2 revealed that approximately 60% of the interacting cells remained firmly adherent, as compared with approximately 10% on L cells expressing E-selectin or ICAM-1 alone. Cell arrest was dependent on application of shear and activation of Mac-1 and LFA-1 to bind ICAM-1. Firm adhesion was inhibited by blocking E-selectin, L-selectin, or PSGL-1 with Abs and by inhibitors to the mitogen-activated protein kinases. A chimeric soluble E-selectin-IgG molecule specifically bound sialylated ligands on neutrophils and activated adhesion that was also inhibited by blocking the mitogen-activated protein kinases. We conclude that neutrophils rolling on E-selectin undergo signal transduction leading to activation of cell arrest through beta 2 integrins binding to ICAM-1.  相似文献   

3.
Selectin family members largely mediate initial tethering and rolling of leukocytes on vascular endothelium, whereas integrin and Ig family members are essential for leukocyte firm adhesion. To quantify functional synergy between L-selectin and Ig family members during leukocyte rolling, the EA.hy926 human vascular endothelial line was transfected with either fucosyltransferase VII (926-FtVII) cDNA to generate L-selectin ligands alone or together with ICAM-1 cDNA (926-FtVII/ICAM-1). The ability of transfected 926 cells to support human leukocyte interactions was assessed in vitro using parallel plate flow chamber assays. Lymphocyte rolling on 926-FtVII cells was increased by approximately 70% when ICAM-1 was expressed at physiological levels. Although initial tether formation was similar for both cell types, lymphocyte rolling was 26% slower on 926-FtVII/ICAM-1 cells. Pretreatment of lymphocytes with an anti-CD18 mAb eliminated the increase in rolling, and all rolling was blocked by anti-L-selectin mAb. In addition, rolling velocities of lymphocytes from CD18-hypomorphic mice were 48% faster on 926-FtVII/ICAM-1 cells, with a similar reduction in rolling frequency relative to wild-type lymphocytes. CD18-hypomorphic lymphocytes also showed an approximately 40% decrease in migration to peripheral and mesenteric lymph nodes during in vivo migration assays compared with wild-type lymphocytes. Likewise, wild-type lymphocyte migration to peripheral lymph nodes was reduced by approximately 50% in ICAM-1(-/-) recipient mice. Similar to human lymphocytes, human neutrophils showed enhanced rolling interactions on 926-FtVII/ICAM-1 cells, but also firmly adhered. Thus, in addition to mediating leukocyte firm adhesion, CD18 integrin/ICAM-1 interactions regulate leukocyte rolling velocities and thereby optimize L-selectin-mediated leukocyte rolling.  相似文献   

4.
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl Lewis(X) (sLe(X)), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLe(X)/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLe(X)/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLe(X)/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLe(X) mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLe(X)/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for beta(2)-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology.  相似文献   

5.
An early step in activation of leukocyte adhesion is a release of integrins from cytoskeletal constraints on their diffusion, leading to rearrangement and, consequently, increased avidity. Static adhesion assays using purified ligand as a substrate have demonstrated that very low doses of cytochalasin D disconnect beta2-integrins from their cytoskeletal links, allowing rearrangement and activating adhesion. The adhesion process in blood vessels is poorly simulated by these assays, however, for two reasons: leukocyte adhesion to endothelium 1), occurs in the presence of blood flow and 2), involves the simultaneous interactions of multiple sets of adhesion molecules. We investigated the effect of cytochalasin D, at concentrations that increase integrin diffusion but do not alter leukocyte shape and surface features, on adhesion of leukocytes to endothelial cells under flow. Cytochalasin D increased the number of rolling cells, the number of firmly adherent cells, and the duration of both rolling and firm adhesion. These effects required endothelial cell expression of ICAM-1, the ligand for leukocyte beta2-integrins. The beta2-integrin-ICAM-1 interaction alone was not sufficient, however. Experiments using purified substrates demonstrated that avidity effects on activation of adhesion under flow require functional cooperativity between integrins and other adhesion receptors.  相似文献   

6.
Leukocyte recruitment from the bloodstream to surrounding tissues is an essential component of the immune response. Capture of blood-borne leukocytes onto vascular endothelium proceeds via a two-step mechanism, with each step mediated by a distinct receptor-ligand pair. Cells first transiently adhere, or "roll" (via interactions between selectins and sialyl-Lewis-x), and then firmly adhere to the vascular wall (via interactions between integrins and ICAM-1). We have reported that a computational method called adhesive dynamics (AD) accurately reproduces the fine-scale dynamics of selectin-mediated rolling. This paper extends the use of AD simulations to model the dynamics of cell adhesion when two classes of receptors are simultaneously active: one class (selectins or selectin ligands) with weakly adhesive properties, and the other (integrins) with strongly adhesive properties. AD simulations predict synergistic functions of the two receptors in mediating adhesion. At a fixed density of surface ICAM-1, increasing selectin densities lead to greater pause times and an increased tendency toward firm adhesion; thus, selectins mechanistically facilitate firm adhesion mediated by integrins. Conversely, at a fixed density of surface selectin, increasing ICAM-1 densities lead to greater pause times and an increased tendency to firm adhesion. We present this relationship in a two-receptor state diagram, a map that relates the densities and properties of adhesion molecules to various adhesive behaviors that they code, such as rolling or firm adhesion. We also present a state diagram for neutrophil activation, which relates beta(2)-integrin density and integrin-ICAM-1 kinetic on rate to neutrophil adhesive behavior. The predictions of two-receptor adhesive dynamics are validated by the ability of the model to reproduce in vivo neutrophil rolling velocities from the literature.  相似文献   

7.
Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant αLβ2 immobilized on microspheres and β2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels with integrin activation in solutions of divalent cations and shift dramatically upward to hyperactivated states with cell signaling in leukocytes. Taking advantage of very rare events, we used repeated measurements of bond lifetimes under steady ramps of force to achieve a direct assay for the off-rates of ICAM-1 from β2 integrin in each experiment. Of fundamental importance, the assay for off-rates does not depend on how the force is applied over time, and remains valid when the rates of dissociation change with different levels of force. In this first article, we present results from tests of a monovalent ICAM-1 probe against immobilized αLβ2 in environments of divalent cations (Ca2+, Mg2+, and Mn2+) and demonstrate in detail the method for assay of off-rates. When extrapolated to zero force, the force-free values for the off-rates are found to be consistent with published solution-based assays of soluble ICAM-1 dissociation from immobilized LFA-1, i.e., ∼10−2/s in Mg2+ or Mn2+ and ∼1/s in Ca2+. At the same time, as expected for adhesive function, we find that the β2 integrin bonds activated in Mn2+ or Mg2+ possess significant and persistent mechanical strength (e.g., >20 pN for >1 s) even when subjected to slow force ramps (<10 pN/s). As discussed in our companion article, using the same assay, we find that although the rates of dissociation for diICAM-1fc bonds to LFA-1 on neutrophils in Mn2+ are similar to those for mICAM-1 bonds to recombinant αLβ2 on microspheres, they appear to represent a dimeric attachment to a pair of tightly clustered integrin heterodimers. The mechanical strengths and lifetimes of the dimeric interactions increase dramatically when the neutrophils are stimulated by the chemokine IL-8 or are bound with an allosterically activating (anti-CD18) monoclonal antibody, demonstrating the major impact of cell signaling on LFA-1.  相似文献   

8.
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.  相似文献   

9.
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.  相似文献   

10.
Using single-molecule force spectroscopy to probe ICAM-1 interactions with recombinant αLβ2 immobilized on microspheres and β2 integrin on neutrophils, we quantified an impressive hierarchy of long-lived, high-strength states of the integrin bond, which start from basal levels with activation in solutions of divalent cations and shift dramatically upward to hyperactivated states with cell signaling. Taking advantage of very rare events, we used repeated measurements of bond lifetimes under steady ramps of force to achieve a direct assay for the off-rates of ICAM-1 from β2 integrin throughout the course of each experiment. In our companion article I, we demonstrate the assay using results from tests of a monovalent ICAM-1 probe against recombinant αLβ2 on microspheres in millimolar solutions of divalent cations (Ca2+, Mg2+, Mn2+). In this article, we examine the impact of inside-out and outside-in signaling in neutrophils on the lifetimes and mechanical strengths of ICAM-1 bonds to β2 integrin on the cell surface. Even though ICAM-1 bonds to recombinant αLβ2 on microspheres in Mg2+ or Mn2+ can live for long periods of time under slow pulling, here we show that stimulation of neutrophils in Mg2+ plus the chemokine IL-8 (i.e., inside-out signaling) induces several-hundred-fold longer lifetimes for ICAM-1 attachments to LFA-1, creating strong bonds at very slow pulling speeds where none are perceived in Mg2+ or Mn2+ alone. Similar changes are observed with outside-in signaling, i.e., long lifetimes and increased bond strength also occur when neutrophils are bound with the activating (anti-CD18) monoclonal 240Q. Limiting our investigation to rare events using very dilute ICAM-1 probes, we show that although the prolonged lifetimes of cell surface attachments for both inside-out and outside-in signaling exhibit single-bond-like statistics for dissociation under force, they are consistent with a tightly coupled dimeric ICAM-1 interaction with a pair of LFA-1 heterodimers.  相似文献   

11.
Activated T cells migrate from the blood into nonlymphoid tissues through a multistep process that involves cell rolling, arrest, and transmigration. P-Selectin glycoprotein ligand-1 (PSGL-1) is a major ligand for P-selectin expressed on subsets of activated T cells such as Th1 cells and mediates cell rolling on vascular endothelium. Rolling cells are arrested through a firm adhesion step mediated by integrins. Although chemokines presented on the endothelium trigger integrin activation, a second mechanism has been proposed where signaling via rolling receptors directly activates integrins. In this study, we show that Ab-mediated cross-linking of the PSGL-1 on Th1 cells enhances LFA-1-dependent cell binding to ICAM-1. PSGL-1 cross-linking did not enhance soluble ICAM-1 binding but induced clustering of LFA-1 on the cell surface, suggesting that an increase in LFA-1 avidity may account for the enhanced binding to ICAM-1. Combined stimulation by PSGL-1 cross-linking and the Th1-stimulating chemokine CXCL10 or CCL5 showed a more than additive effect on LFA-1-mediated Th1 cell adhesion as well as on LFA-1 redistribution on the cell surface. Moreover, PSGL-1-mediated rolling on P-selectin enhanced the Th1 cell accumulation on ICAM-1 under flow conditions. PSGL-1 cross-linking induced activation of protein kinase C isoforms, and the increased Th1 cell adhesion observed under flow and also static conditions was strongly inhibited by calphostin C, implicating protein kinase C in the intracellular signaling in PSGL-1-mediated LFA-1 activation. These results support the idea that PSGL-1-mediated rolling interactions induce intracellular signals leading to integrin activation, facilitating Th1 cell arrest and subsequent migration into target tissues.  相似文献   

12.
Modulation of integrin affinity and/or avidity provides a regulatory mechanism by which leukocyte adhesion to endothelium is strengthened or weakened at different stages of emigration. In this study, we demonstrate that binding of high-affinity alpha 4 beta 1 integrins to VCAM-1 strengthens alpha L beta 2 integrin-mediated adhesion. The strength of adhesion of Jurkat cells, a human leukemia T cell line, or MnCl2-treated peripheral blood T cells to immobilized chimeric human VCAM-1/Fc, ICAM-1/Fc, or both was quantified using parallel plate flow chamber leukocyte detachment assays in which shear stress was increased incrementally (0.5-30 dynes/cm2). The strength of adhesion to VCAM-1 plus ICAM-1, or to a 40-kDa fragment of fibronectin containing the CS-1 exon plus ICAM-1, was greater than the sum of adhesion to each molecule alone. Treatment of Jurkat or blood T cells with soluble cross-linked VCAM-1/Fc or HP2/1, a mAb to alpha 4, significantly increased adhesion to ICAM-1. These treatments induced clustering of alpha L beta 2 integrins, but not the high-affinity beta 2 integrin epitope recognized by mAb 24. Up-regulated adhesion to ICAM-1 was abolished by cytochalasin D, an inhibitor of cytoskeletal rearrangement. Taken together, our data suggest that the binding of VCAM-1 or fibronectin to alpha 4 beta 1 integrins initiates a signaling pathway that increases beta 2 integrin avidity but not affinity. A role for the cytoskeleton is implicated in this process.  相似文献   

13.
Lymphocyte recruitment into the brain is a critical event in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. We developed a novel intravital microscopy model to directly analyze through the skull the interactions between lymphocytes and the endothelium in cerebral venules of mice. No adhesive interactions were observed between lymphocytes and the nonactivated endothelium in the cerebral microcirculation. When brain venules were activated by pretreating mice with TNF-alpha or LPS, proteolipid protein 139-151 autoreactive T lymphocytes rolled and arrested; notably, only a few peripheral lymph node cells rolled and firmly adhered. Abs anti-P-selectin glycoprotein ligand-1 and anti-E- and P-selectin blocked tethering and rolling of autoreactive lymphocytes, suggesting that P-selectin glycoprotein ligand-1/endothelial selectins are critical in the recruitment of lymphocytes in inflamed brain venules. E- and P-selectin were expressed on cerebral vessels upon in vivo activation and had a patchy distribution during the preclinical phase of active and passive experimental autoimmune encephalomyelitis. LFA-1/ICAM-1 and alpha(4) integrins/VCAM-1 supported rolling, but were not relevant to rolling velocity. Firm arrest was mainly mediated by LFA-1 and ICAM-1. Pretreatment of autoreactive lymphocytes with pertussis toxin blocked integrin-dependent arrest, implicating a requirement for G(i) protein-dependent signaling in vessels from nonlymphoid districts. In conclusion, our data unveils the molecular mechanisms controlling the recruitment of autoreactive lymphocytes in inflamed cerebral vessels and suggest new insights into the pathogenesis of autoimmune inflammatory diseases of the CNS.  相似文献   

14.
Using microfluidic assays at a 100 s?1 wall shear rate, we examined the effects of ethanol on cholesterol-loaded neutrophils with respect to: (1) collision efficiency and membrane tethering to P-selectin-coated microbeads, (2) rolling on P-selectin-coated surfaces, and (3) primary and secondary interactions with neutrophils pre-adhered to intercellular adhesion molecule-1 (ICAM-1). Using methyl-β-cyclodextrin:cholesterol complexes, membrane cholesterol was increased over control by 4.6-fold (no ethanol), 3.6-fold (0.3% ethanol pre-loading), and 1.6-fold (0.3% ethanol post-loading). These treatments did not alter CD11b expression; however, PSGL-1 and L-selectin were lowered by cholesterol enrichment (±ethanol). Cholesterol enrichment enhanced microbead collision efficiency, which was abrogated by ethanol. Ethanol had no effect on elevation of tethering fraction by cholesterol enrichment. Incubation of cholesterol-loaded neutrophils with ethanol resulted in significantly longer membrane tethers, due to tether lifetime enhancement. On P-selectin-coated surfaces, cholesterol-enriched neutrophils exposed to ethanol rolled faster and with more variability than cholesterol-enriched neutrophils. Ethanol reduced homotypic collision efficiency of cholesterol-loaded neutrophils without effect on tethering fraction or secondary collision efficiency. Tether length during cholesterol-loaded neutrophil homotypic collisions was enhanced by ethanol, in part due to increased L-selectin/PSGL-1 bond tether lifetime. Overall, ethanol attenuated cholesterol-induced adhesion increases while increasing membrane fluidity as indicated by tether length.  相似文献   

15.
In inflamed venules, neutrophils roll on P- or E-selectin, engage P-selectin glycoprotein ligand-1 (PSGL-1), and signal extension of integrin α(L)β(2) in a low affinity state to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Cytoskeleton-dependent receptor clustering often triggers signaling, and it has been hypothesized that the cytoplasmic domain links PSGL-1 to the cytoskeleton. Chemokines cause rolling neutrophils to fully activate α(L)β(2), leading to arrest on ICAM-1. Cytoskeletal anchorage of α(L)β(2) has been linked to chemokine-triggered extension and force-regulated conversion to the high affinity state. We asked whether PSGL-1 must interact with the cytoskeleton to initiate signaling and whether α(L)β(2) must interact with the cytoskeleton to extend. Fluorescence recovery after photobleaching of transfected cells documented cytoskeletal restraint of PSGL-1. The lateral mobility of PSGL-1 similarly increased by depolymerizing actin filaments with latrunculin B or by mutating the cytoplasmic tail to impair binding to the cytoskeleton. Converting dimeric PSGL-1 to a monomer by replacing its transmembrane domain did not alter its mobility. By transducing retroviruses expressing WT or mutant PSGL-1 into bone marrow-derived macrophages from PSGL-1-deficient mice, we show that PSGL-1 required neither dimerization nor cytoskeletal anchorage to signal β(2) integrin-dependent slow rolling on P-selectin and ICAM-1. Depolymerizing actin filaments or decreasing actomyosin tension in neutrophils did not impair PSGL-1- or chemokine-mediated integrin extension. Unlike chemokines, PSGL-1 did not signal cytoskeleton-dependent swing out of the β(2)-hybrid domain associated with the high affinity state. The cytoskeletal independence of PSGL-1-initiated, α(L)β(2)-mediated slow rolling differs markedly from the cytoskeletal dependence of chemokine-initiated, α(L)β(2)-mediated arrest.  相似文献   

16.
Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab’)2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of αMβ2, but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (&lt;0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by Pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.  相似文献   

17.
Intravital microscopy allows detailed analysis of leukocyte trafficking in vivo, but fails to identify the nature of leukocytes investigated. Here, we describe the development of a CD2-enhanced green fluorescence protein (EGFP)-transgenic mouse to characterize lymphocyte trafficking during inflammation in vivo. A CD2-EGFP plasmid construct including the CD2 promoter, the EGFP transgene, and the CD2 locus control region was injected into B6CBA/F1 pronuclei. EGFP+ offspring were backcrossed into C57BL/6 mice for six generations. Flow cytometry demonstrated that all peripheral blood EGFP+ cells were positive for CD2 and negative for the granulocyte Ag Ly 6-G (GR-1). EGFP(high) cells stained positive for CD2, CD3, CD8, TCR beta-chain, and NK1.1 but did not express the B cell and monocyte markers CD45RA, CD19, and CD11b. In vitro stimulation assays revealed no difference in lymphocyte proliferation and IL-2 secretion between EGFP+ and EGFP- mice. Intravital microscopy of untreated or TNF-alpha-treated cremaster muscle venules showed EGFP+ cells in vivo, but these cells did not roll or adhere to the vessel wall. In cremaster muscle venules treated with both TNF-alpha and IFN-gamma, EGFP(high) cells rolled, adhered, and transmigrated at a rolling velocity slightly higher (11 microm/s) than that of neutrophils (10 microm/s). Blocking alpha4 integrin with a mAb increased rolling velocity to 24 microm/s. These findings show that CD8+ T cells roll in TNF-alpha/IFN-gamma-pretreated vessels in vivo via an alpha4 integrin-dependent pathway.  相似文献   

18.
A key endothelial receptor in leukocyte-endothelial cell (EC) interactions is ICAM-1. ICAM-1 is constitutively expressed at low levels on vascular ECs, and its levels significantly increase following stimulation with many proinflammatory agents. This study provides evidence that in inflamed arterioles of anesthetized mice (65 mg/kg ip Nembutal), ICAM-1 mediates leukocyte rolling, in contrast to its expected role of mediating firm adhesion in venules. The number of leukocytes rolling on arteriolar ECs is decreased in ICAM-1 knockout (KO) compared with wild-type (WT) mice (KO, 6.0 +/- 0.9; WT, 12.0 +/- 1.0 leukocytes/40 s; P < 0.05), whereas the leukocyte-rolling number in venules remains unaffected (KO, 5.6 +/- 0.9; WT, 7.0 +/- 0.7 leukocytes/40 s; n = 13-15 sites). We also show that the fraction of leukocytes that is rolling on arteriolar ECs does so with a higher characteristic velocity (>70 microm/s), and, furthermore, that the distance over which rolling contacts with the arteriolar wall are maintained is ICAM-1 dependent. In ICAM-1 KO animals or in WT mice in the presence of ICAM-1-blocking antibody, leukocytes rolled significantly shorter distances over the sampled 200-microm vessel length compared with WT (68 +/- 6.7 and 55 +/- 9.4 vs. 85 +/- 12.9% total, respectively, n = 4 sites, P < 0.05). We also found evidence that in ICAM-1 KO mice, a significant fraction of leukocyte rolling and adhesive interactions with arteriolar ECs could be accounted for by upregulation of another adhesion molecule, VCAM-1, providing an important illustration of how expression of related proteins can be altered following genetic ablatement of a target molecule (in this case ICAM-1).  相似文献   

19.
Activated neutrophils interacting with the vessel wall can alter vascular permeability to macromolecules such as albumin via release of various secretion products that induce changes in the endothelial monolayer. In the current work we used cremaster microvessels of anesthetized mice to show that, in addition to this paracrine mechanism, leukocyte ligation of endothelial ICAM-1 directly activates endothelial cell (EC) signaling, altering EC permeability to albumin [i.e., solute permeability (P(s))]. We show that antibody cross-linking of surface ICAM-1 in intact microvessels is sufficient to increase P(s) even in the absence of interacting leukocytes. Unstimulated arterioles do not support leukocyte-EC interactions, but despite this, antibody ligation of ICAM-1 in these vessels induced a twofold increase in P(s). Similarly, in venules that were depleted of interacting neutrophils, P(s) was decreased to below resting levels and was restored by ligation of ICAM-1. Use of function-blocking antibodies to separately block leukocyte rolling or adhesion under unstimulated or TNF-α-activated conditions established that both rolling and adhered leukocytes contribute to P(s) regulation in situ. Both rolling and adhesion activated EC-dependent signaling mechanisms that increased P(s). ICAM-1 ligation with primary antibody alone or primary followed by secondary antibodies showed that regulation of P(s) is directly dependent on the degree of ICAM-1 clustering. Under physiological versus inflamed conditions, respectively, this ICAM-1 clustering-dependent regulation of P(s) switches from PKC dependent and Src independent to Src dependent and PKC independent. This study thus identifies a new mechanism by which antiadhesion treatment may constitute a potential therapy for tissue edema.  相似文献   

20.
Functional studies demonstrate that T cell activation often requires not only occupancy of the TCR but costimulatory interactions of other molecules, which remain largely undefined. We have tested the hypothesis that LFA-1 interaction with its ligand intercellular adhesion molecule 1 (CD54) (ICAM-1) is such a costimulatory interaction in a model system using biochemically purified ICAM-1 and TCR cross-linking by anti-CD3 mAb OKT3 immobilized on plastic. Resting T cells do not respond to OKT3 mAb immobilized on plastic. However ICAM-1 deposited on plastic together with the nonmitogenic immobilized OKT3 results in a potent activating stimulus. This costimulation cannot be readily accounted for by ICAM-1-mediated adhesion but is consistent with a role in signaling, which is observed in ICAM-1-mediated augmentation of activation induced by PMA/ionomycin. The ability of ICAM-1 to costimulate with immobilized CD3 contrasts with minimal costimulatory activity of cytokines IL-1 beta, IL-2, and IL-6. The proliferative response to co-immobilized OKT3 and ICAM-1 is dependent on the IL-2R, which is induced only in the presence of both OKT3 and ICAM-1. The present data demonstrate that LFA-1/ICAM-1 interaction is a potent costimulus for TCR-mediated activation; this observation, interpreted in light of previous reports, suggests that LFA-1/ICAM-1 is of major physiologic importance as a costimulatory signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号