首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the mechanism of inhibition by interferon-gamma (IFN-gamma) of the development of exoerythrocytic forms (EEF) of Plasmodium berghei in the livers of rats. At the time corresponding to the maximum development of EEF (44 hr after injection of sporozoites), the livers of the IFN-gamma-treated rats contained less parasite DNA as compared with controls. Twenty-four to 72 hr later, the livers of both groups of animals were free of parasites; that is, IFN-gamma treatment does not delay the development of the EEF. The decrease in parasite DNA observed in the IFN-gamma-treated rats was due to a diminution in the number, but not the size, of EEF. It appears, therefore, that treatment with the lymphokine either destroys the parasites or does not affect their replication. To study the mechanism of resistance to IFN-gamma of a small population of EEF, we subjected the parasites to four cycles of selection by IFN-gamma. The parasites from the "selected" and "nonselected" populations were equally susceptible to inhibition by IFN-gamma, indicating that the escape from IFN-gamma activity is not inherited.  相似文献   

2.
ABSTRACT. Cultivation of the Plasmodium gallinaceum exoerythrocytic forms from sporozoites was attempted in three diferent cell lines: HEPG2-A16 (from a human hepatoma), VERO (monkey kidney epithelial cells) and SL-29 (chicken embryo fibroblast cells). the sporozoites in vaded all three cell types but their development into exoerythrocytic forms ocurred only in the SL-29 cells. In the presence of specific monoclonal antibodies against the major circumsporozoite protein, there were varying degrees of inhibition of parasite invasion of the SL-29 cells. of seven monoclonal antibodies tested, two completely inhibited cell invasion at high concentrations and caused intense inhibition at concentrations as low as 2.5 μg/ml, four caused intense inhibition at these various concentrations, and one had no effect on sporozoite invasion.  相似文献   

3.
An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I scavenger receptor (SR-BI) is the strongest regulator of Plasmodium infection among these factors. Inhibition of SR-BI function reduced P. berghei infection in Huh7 cells, and overexpression of SR-BI led to increased infection. In vivo silencing of liver SR-BI expression in mice and inhibition of SR-BI activity in human primary hepatocytes reduced infection by P. berghei and by P. falciparum, respectively. Heterozygous SR-BI(+/-) mice displayed reduced P. berghei infection rates correlating with liver SR-BI expression levels. Additional analyses revealed that SR-BI plays a dual role in Plasmodium infection, affecting both sporozoite invasion and intracellular parasite development, and may therefore constitute a good target for malaria prophylaxis.  相似文献   

4.
Primary cultures of BALB/cJ hepatocytes treated with 10(3) U/ml rIFN-gamma consistently inhibited intracellular Plasmodium berghei liver schizont development by 50 to 70%. Monomethyl-L-arginine (NGMMLA), the competitive inhibitor of L-arginine as substrate for production of nitric oxides by hepatocytes, reversed the activity of IFN-gamma on these malaria-infected cells. Reversal of IFN-gamma activity by NGMMLA was dose dependent and was maximal at 0.5 mM NGMMLA. Depletion of L-arginine by addition of arginase to the culture medium blocked the capacity of IFN-gamma to inhibit parasite development in hepatocytes; addition of excess L-arginine to cultures treated with IFN-gamma in the presence of NGMMLA competitively restored IFN-gamma capacity to activate hepatocyte anti-parasite activity. TNF-alpha was neither required for IFN-gamma activity, nor effective at any concentration tested as an inhibitor of schizont development by itself in primary hepatocytes. These data strongly suggest that the action of IFN-gamma on P. berghei-infected hepatocytes is to induce the production of L-arginine-derived nitrogen oxides that are toxic for the intracellular parasite.  相似文献   

5.
To determine the role of IFN-gamma in the activation of resident mouse peritoneal macrophages, crude macrophage-activating lymphokines were incubated with a monoclonal anti-murine IFN-gamma antibody. This treatment abolished the capacity of mitogen-induced lymphokines to enhance either H2O2 release or activity against the intracellular protozoa Toxoplasma gondii and Leishmania donovani. All macrophage-activating factor detected by these assays was also removed by passing the lymphokines over a Sepharose column to which the monoclonal anti-IFN-gamma antibody had been coupled. Therefore, pure murine rIFN-gamma was tested both in vitro and in vivo as a single activating agent. After 48 hr of pretreatment in vitro with 0.01 to 1 antiviral U/ml, macrophage H2O2-releasing capacity was enhanced an average of 6.4-fold; half-maximal stimulation was induced by 0.03 U/ml. Resident macrophages infected with T. gondii half-maximally inhibited parasite replication after 24 hr of preincubation with 0.14 U/ml of rIFN-gamma, and near complete inhibition was achieved by pretreatment with 100 U/ml. Half-maximal leishmanicidal activity was induced by 0.08 U/ml of rIFN-gamma, and 67 to 75% of intracellular L. donovani amastigotes were killed after macrophages were preincubated with 10 to 100 U/ml. Eighteen hours after parenteral injection of rIFN-gamma, peritoneal macrophages displayed a dose-dependent enhancement of H2O2-releasing capacity and antiprotozoal activity. Half-maximal enhancement required 85 to 250 U or rIFN-gamma given i.p. Peritoneal macrophages were also activated by rIFN-gamma injected i.v. and intramuscularly. These results suggest that, in the mouse model, IFN-gamma is likely to be a primary factor within mitogen-induced lymphokines responsible for activating macrophage oxidative metabolism and antiprotozoal activity, and indicate that rIFN-gamma is a potent activator of these effector functions both in vitro and in vivo. These findings provide a rationale for evaluating rIFN-gamma in the treatment of systemic intracellular infections, and indicate that murine models are appropriate for such studies.  相似文献   

6.
A specific DNA probe has been used to quantify the neutralizing effects of monoclonal antibodies (3D11) against the circumsporozoite protein of Plasmodium berghei sporozoites. The amount of parasite DNA was measured in the livers of Norway Brown rats at the peak of proliferation of the exoerythrocytic forms (EEF). In vitro treatment of 1.5 X 10(5) sporozoites with 0.36 microgram/0.5 ml of whole 3D11 IgG neutralized about 90% of the sporozoite infectivity. When the dose was 3.6 micrograms no signal was detected, indicating that less than ten sporozoites developed into EEF in the liver. In contrast, 3.6 micrograms of Fab obtained from 3D11 neutralized sporozoite infectivity by only 60%. Although the neutralizing effect of 3D11 was very marked, the infected rats developed parasitemias after a prolonged delay in patency, suggesting that a small proportion of sporozoites was resistant to the effects of 3D11. The sporozoites were subjected to four cycles of 3D11-mediated selection, each one involving treatment of sporozoites with the antibodies, injection of the mixture into rats, infection of hamsters with blood stage parasites obtained from the rats, feeding of Anopheles stephensi on these hamsters, and obtaining sporozoites from the salivary glands of the infected mosquitoes. After four cycles of selection, the susceptibility of the resulting sporozoites to different concentrations of 3D11 was compared with that of nonselected sporozoites. No differences were detected, indicating that the capacity of a few sporozoites to escape the neutralizing effect of 3D11 antibodies is not inherited.  相似文献   

7.
Recombinant IL-4 inhibits IL-2-induced lymphokine-activated killer (LAK) cell development of PBMC. We evaluated the effect of various cytokines in reversing IL-4-mediated LAK inhibition. PBMC were cultured in IL-2 (10-1000 u/ml) with or without IL-4 (2-100 u/ml) and tested for cytotoxicity against the NK-sensitive K562 cells and NK-resistant UCLA-SO-M14 cells. Addition of IL-4 at the beginning of culture suppresses LAK activity in a dose-dependent fashion. Addition of IFN-gamma or TNF-alpha partially reverses IL-4-mediated inhibition (30-100%) in a dose-dependent fashion. IFN-gamma and TNF-alpha must be added within the first 24 hr of initiating culture in order to reverse IL-4 inhibition. Furthermore, IFN-gamma and TNF-alpha are most effective at reversing IL-4 inhibition at low concentrations of IL-2 (less than 100 u/ml). Addition of other IL-2-induced cytokines such as GM-CSF (50 u/ml), M-CSF (250 u/ml), and IFN-alpha (10-10,000 u/ml) fails to reverse IL-4 inhibition. In addition to suppression of LAK induction, IL-4 also inhibits IL-2-induced IFN-gamma and TNF-alpha protein production in PBMC. The reversal of IL-4-mediated LAK inhibition by TNF-alpha and IFN-gamma may therefore be due to resupply of these endogenously suppressed cytokines.  相似文献   

8.
9.
Rhoptry secretion of membranous whorls by Plasmodium berghei sporozoites   总被引:3,自引:0,他引:3  
Electron microscopy of sporozoites of the rodent malaria parasite, Plasmodium berghei, reveals electron-dense multilaminate membranous whorls within components of the rhoptry-microneme complex after fixation with tannic acid in conjunction with glutaraldehyde. This multilaminate material, which has a dark line to dark line periodicity of approximately 5 nm, appears to be secreted from the sporozoite since it is also found adhering to the sporozoite's external surface. The material may function in sporozoite gliding motility and in invasion of host cells.  相似文献   

10.
The induction of enhanced natural cytotoxicity from human peripheral mononuclear cells by staphylococcal enterotoxin B (SEB) was examined. The activated killer cytotoxicity (AKC) was maximum at 16 hr with 1 mg/ml SEB. The precursor and effector cells of AKC were determined to be primarily CD5 negative, CD8 negative, CD16 positive cells. Monocytes and interleukin-1 played no role in the generation of AKC. However, a major role for interleukin-2 (IL-2) in AKC was shown by the inhibition of AKC when anti-IL-2 antibody or cyclosporin was added to the induction cultures. SEB rapidly induced the production of IL-2 from glass nonadherent cells by 6 hr and reached peak levels by 24 hr (162 U/ml). IL-2 induced by SEB in these induction cultures was preferentially produced by CD16 positive cells. Even though interferon-gamma (IFN-gamma) production was induced in these cultures, no role for IFN could be shown in SEB-induced AKC.  相似文献   

11.
A stage-specific ribosomal RNA probe has been used to quantitate exoerythrocytic development of Plasmodium berghei in primary cultures of mouse hepatocytes. Parasite rRNA could be detected as soon as 6 hr after sporozoite invasion and was increased during schizogony to a maximum at 48 hr, when mature schizonts were identified by microscopy. As few as 10 exoerythrocytic schizonts could be detected by filter blot hybridization, followed by autoradiography and liquid scintillation counting. By hybridizing the culture rRNA samples with either parasite-specific or universal rRNA probes, the in vitro tissue schizonticidal activity and hepatotoxicity of primaquine, two of its analogues, and pyrimethamine, could be assessed. After a 48-hr exposure of the culture to serial dilutions of each drug, a quantitative relationship was demonstrated between the decrease of the parasite rRNA and the increase of the drug concentrations. No significant parasite-specific rRNA could be detected at the concentration achieving complete inhibition of schizont formation but causing no cytotoxic effects on host hepatocytes. In contrast to microscopic-based assays, this molecular approach provides an objective and quantitative in vitro method for rapid screening and evaluation of tissue schizonticidal antimalarials.  相似文献   

12.
The effect of IL-4 on the IFN-gamma-induced state of activation of cultured human monocytes was investigated with regard to their ability to produce hydrogen peroxide and their antileishmanial capacity towards the intracellular parasite Leishmania donovani. IL-4 was found to inhibit the IFN-gamma-dependent hydrogen peroxide production of monocytes. Treatment of monocytes with IFN-gamma (200 to 600 U/ml) for 48 h increased the hydrogen peroxide production fourfold above background. Coincubation of the monocytes with IL-4 (1 to 1000 U/ml) and IFN-gamma (200 to 600 U/ml) inhibited this increase by 50 to 100%. IL-4 alone did not modulate the hydrogen peroxide production of monocytes. Pretreatment of monocytes with IL-4 for 20 min to 3 h was already effective in preventing the IFN-gamma response. Addition of IL-4 not later than 6 h after the start of incubation with IFN-gamma was necessary for an optimal inhibitory effect. IL-4 also inhibited the IFN-gamma-induced antileishmanial capacity of monocytes: IFN-gamma (1000 U/ml) induced a 54 +/- 10% reduction in the number of parasites. Monocytes treated with combinations of IL-4 (100 to 1000 U/ml) and IFN-gamma (1000 U/ml) were unable to reduce the parasite numbers. IL-4 alone did not alter the uptake of Leishmania donovani nor induce antileishmanial activity. These results demonstrate that IL-4 disables human cultured monocytes to respond to IFN-gamma activation.  相似文献   

13.
Monocyte complement stimulator (MCS), a product of T lymphocytes, is defined by its ability to stimulate the synthesis and secretion of the second complement component (C2) by monocytes. Most macrophage-activating factor (MAF) activity present in lymphokine-rich culture supernatants has recently been found to be due to interferon-gamma (IFN-gamma). We therefore hypothesized that IFN-gamma may have MCS activity as well. We tested recombinant, E. coli-derived, human IFN-gamma (rIFN-gamma) for its effects on C2 production by adherent peripheral blood monocytes and U937 cells, a human monocytic cell line. Recombinant IFN-gamma in concentrations ranging from 0.1 to 300 U/ml (0.003 to 8.8 ng/ml) stimulates C2 production by both cell populations. Exposure of responding cells for at least 24 hr is required for maximal stimulation. To determine the contribution of IFN-gamma toward total MCS activity in crude lymphokine-rich supernatants, we employed a solid-phase immunoabsorption technique with the use of a monoclonal anti-IFN-gamma antibody. This technique removed all IFN-gamma detectable by a sensitive ELISA, but MCS activity was decreased by only 40 to 50%. Additionally, MCS activity of these supernatants did not correlate with IFN-gamma content as determined by ELISA. By using another method to eliminate IFN-gamma activity, acid dialysis destroyed all rIFN-gamma activity, as measured by stimulation of U937 C2 synthesis, but eliminated only 30 to 67% of MCS activity from crude lymphokine preparations. Thus IFN-gamma stimulates C2 production by monocytes and U937 cells and apparently accounts for some, but not all, MCS activity present in lymphokine-rich supernatants. Other lymphokines are present in such supernatants that also possess this activity.  相似文献   

14.
Enhanced natural killer (NK) activity was detected in the spleens of mice as early as 24 hr after single i.v. inoculation with gamma-irradiated Plasmodium berghei sporozoites. The activity peaked at 48 hr post-injection, and declined below baseline level by day 8. Reinoculation of mice with irradiated sporozoites produced an increased NK activity significantly smaller than the original activity. Spleen cells sensitized in vivo as well as nonsensitized spleen cells stimulated in vitro with sporozoites produced high levels of interferon (IFN) and displayed enhanced NK activity. Characterization of the IFN through the use of specific antibodies revealed that it was mainly IFN-gamma. The cellular basis for IFN-gamma induction was linked to the mitogenicity of P. berghei sporozoites for T cells. The possibility exists that IFN-gamma may have a regulatory effect on antibody production against P. berghei sporozoites.  相似文献   

15.
Patients with the acquired immunodeficiency syndrome (AIDS) exhibit a variety of disorders of cellular immunity, including a deficient ability to generate cytotoxic T cells and depressed levels of natural killer (NK) cell activity. Interleukin 2 (IL 2) in vitro can markedly augment these depressed immune functions. Because IL 2 can induce the release of interferon-gamma (IFN-gamma) from normal peripheral blood lymphocytes (PBL), and because IFN-gamma may play a role in the regulation of NK cell activity, this study was performed to determine if the IL 2 enhancement of the NK cell activity of patients with AIDS was an IFN-gamma-dependent effect. PBL from eight healthy heterosexual donors and from nine patients with AIDS were studied for their ability to release IFN-gamma in response to IL 2 at a concentration of 100 U/ml. After 60 hr of culture, the PBL of all eight healthy donors produced IFN-gamma with a mean titer of 113 U/ml (range 40 to 320 U/ml). In contrast, the PBL from only two of nine patients with AIDS released measurable amounts of IFN-gamma (40 U/ml each) in response to IL 2 with a mean titer of 13.5 U/ml for all nine. Although the PBL from patients with AIDS were deficient in their capacity to produce IFN-gamma in response to 100 U/ml of IL 2, significant enhancement of NK cell activity could be obtained after only 1 hr of PBL treatment with 10 U/ml of IL 2, with an optimal NK enhancing effect occurring at doses of 50 to 100 U/ml of IL 2. The use of an anti-IFN-gamma monoclonal antibody resulted in complete neutralization of the IFN released from the normal PBL cultured with IL 2, but failed to inhibit the IL 2 enhancement of NK cell activity. Exogenous IFN-gamma exhibited different kinetics of enhancement of NK cell activity when compared to IL 2, requiring substantially more than 1 hr of pretreatment of PBL. These results indicate that the PBL from patients with AIDS usually do not release IFN-gamma when cultured with IL 2, and that IL 2 enhancement of the depressed NK cell activity of these patients may be an IFN-gamma-independent event. These results may have important implications for the therapy of AIDS.  相似文献   

16.
To test the hypothesis that tissue macrophages from AIDS patients have no intrinsic defects in either antimicrobial activity or in the capacity to respond to T cell-derived activating stimuli, alveolar macrophages from 11 patients were treated with crude lymphokines produced by healthy donors. After 72 hr of pretreatment with 10% mitogen- or antigen-induced crude lymphokines (which contained 300 U/ml of interferon-gamma [IFN-gamma]), AIDS alveolar macrophages generated twofold to threefold more H2O2 and readily inhibited the replication of the intracellular pathogens Toxoplasma gondii and Chlamydia psittaci. These responses were indistinguishable from those displayed by activated alveolar cells from 12 non-AIDS patients and three healthy volunteers. As judged by the abrogating effects of a neutralizing anti-human IFN-gamma monoclonal antibody, lymphokine-induced alveolar macrophage activation appeared to be largely IFN-gamma-dependent; thus, macrophages were also stimulated with recombinant (r)IFN-gamma alone. Seventy-two hours of treatment with 300 U/ml of rIFN-gamma resulted in both enhanced oxidative and antimicrobial activity comparable to that achieved by crude lymphokines, and the responsiveness of AIDS alveolar macrophages to rIFN-gamma was identical to control cells. These in vitro results suggest that tissue mononuclear phagocytes from AIDS patients a) are free of apparent defects in intracellular antimicrobial activity, b) are fully responsive to activating T cell products, and c) support the use of IFN-gamma as a potential macrophage-activating immunotherapeutic agent in AIDS-related opportunistic infections.  相似文献   

17.
Deoxyribonucleic acid (DNA) polymerase activity was induced at approximately 18 to 20 hr after infection of secondary cultures of human embryonic kidney cells with adenovirus type 2 or type 12, and, at 30 to 50 hr after infection, the activity of this enzyme increased two- to threefold. The activity of thymidine kinase was also induced, but the activity of deoxycytidylic deaminase was not. The DNA content per cell at 71 hr after infection was 1.6-fold greater in adenovirus 2-infected cultures, and approximately 2.4-fold greater in adenovirus 12-infected cultures, than in the noninfected cultures. Several properties of DNA polymerase were studied. The enzymes in normal and adenovirus 2- or 12-infected cell extracts were saturated by approximately the same concentration of heat-denatured salmon sperm DNA primer (160 mug/ml); the enzyme activities had a similar broad pH optimum between 7.5 and 9. Extracts prepared from cells infected by either adenovirus did not activate DNA polymerase from noninfected cells, nor did the noninfected cell extracts inhibit enzyme activity of infected cell extracts. DNA polymerase in both normal and adenovirus 2- or 12-infected cells was located predominantly in the nucleus. In each case, the cytoplasm had only 30% of the enzyme activity of the nucleus. At 40 hr after infection with adenovirus 2 or 12, the activities of the enzyme in the nuclear and cytoplasmic fractions increased two- to threefold. Puromycin, an inhibitor of protein synthesis, prevented DNA polymerase induction when added to cultures during the 18- to 30-hr postinfection period, and it arrested the additional increase in enzyme activity when added after enzyme induction began. However, the increases in both DNA polymerase and thymidine kinase activities took place after treatment of infected cultures with 1-beta-d-arabinofuranosylcytosine, an inhibitor of DNA synthesis and adenovirus growth.  相似文献   

18.
This study was designed to determine whether anti-fungal activity in human polymorphonuclear neutrophils (PMN) might be under the regulation of cytokines such as tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma). By using a radiolabel microassay developed in our laboratory that makes use of the incorporation of [3H]glucose into residual candida, we demonstrated that PMN were better able to inhibit Candida albicans growth in vitro than peripheral blood lymphocytes (PBL). PMN from normal volunteers added to C. albicans for 24 hr at 37 degrees C in a 96-well microplate inhibited fungal growth almost completely at the 300:1 effector/target ratio and frequently at 100:1. Significant activity was still detected at 10:1. In contrast, PBL from the same donors had less activity than PMN at all the ratios tested and lost all function at the 30:1 ratio. TNF and IFN-gamma added to the PMN/candida cultures additionally enhanced PMN to inhibit candida growth. Both cytokines effectively activated PMN down to 0.1 to 0.01 U/ml, and neither cytokine interfered directly with fungal growth, even up to 1000 U/ml. Concentrations of TNF and IFN-gamma below the level that enhanced PMN function when added together to PMN acted synergistically to significantly enhance their anti-fungal activity. Therefore, TNF and IFN-gamma which are active on lymphoid cells, also appear to have the ability to directly activate PMN, and the synergistic action of the two cytokines at low doses that may be below the toxic range may prove to be of clinical importance in protection of immunocompromised host against opportunistic infections.  相似文献   

19.
In the present study, IFN-gamma exposure to primary cultures of rat type II epithelial cells (TIIP) upregulated membrane expression of the common gamma-chain of the IL-2 receptor (approximately 2.5- to 4-fold increase) and redistributed receptor affinity in TIIP, as assessed by Western blot, cell, and tissue histochemistry and Scatchard analysis. As for restitution processes of the lung epithelium, functionality of IL-2R on TIIP was conditional to IFN-gamma exposure: 1) IFN-gamma priming promoted a fivefold increase of IL-2-driven TIIP locomotion (P < 0.05 vs. control at 100 U/ml) and 2) IFN-gamma coincubation with IL-2 reduced bleomycin-induced TIIP apoptosis in vitro by 25% (caspase-3 activity) and by approximately 70% (TdT-mediated dUTP nick end labeling/4',6'-diamidino-2-phenylindole assay) as well as in vivo by approximately 90% (caspase-3 activity; P < 0.05 vs. control). Sustained p42/44 extracellular signal-regulated kinase activity played a protective role in this process, whereas specific inhibition by PD-98059 (50 microM) significantly reversed bleomycin-induced TIIP apoptosis (P < 0.05 vs. control). From these in vitro and in vivo data, it is proposed that combinations of IFN-gamma and IL-2 can drive repair activity of TIIP by stimulating migration and preventing programmed cell death, both of which are speculated to be very fast restitution events after oxidant-induced acute lung injury.  相似文献   

20.
An IgM monoclonal antibody (Mab 36) which reacts with the circumsporozoite (CS) proteins of both P. falciparum and P. berghei was isolated from Plasmodium falciparum sporozoite-immunized mice. In assays of biological activity, Mab 36 induces the CS precipitation reaction with live sporozoites and blocks the invasion of hepatoma cells by sporozoites in vitro at concentrations much lower than those observed for previously reported CS protein-specific monoclonal antibodies. Mab 36 also provided complete protection against P. berghei sporozoite challenge in mice at low doses. Linear epitope mapping revealed that the epitope specificities recognized by Mab 36 are completely encompassed by other monoclonals previously shown to be associated in vivo with protection against P. falciparum or P. berghei sporozoite infection. These results suggest that the ability to make high-affinity IgM antibody to specific CS protein repeat epitopes may be important for eliciting protection against malarial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号