首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phosphorylated, nonstructural protein of bluetongue virus, NS2, is synthesized throughout the replication cycle in comparatively large amounts. The protein was detected in both the soluble and particulate fraction of the cytoplasm of infected cells. The particulate NS2 could be solubilized in 0.5 M NaCl. It was found that NS2 in the particulate fraction and immunoprecipitates of NS2 from the soluble protein fraction could be phosphorylated in vitro. It is not known whether the kinase involved is of cellular or viral origin, but after purification of NS2 by affinity chromatography on poly(U)-Sepharose it could still by phosphorylated in vitro without the addition of exogenous protein kinase. The affinity of NS2 for nucleic acid was also investigated. The protein was found to bind to single-stranded RNA. In the presence of purified bluetongue virus mRNA, NS2 formed a complex with an estimated S value of about 22S.  相似文献   

2.
Microsomal AMP-deaminase was solubilized by 0.5 M KCl after treatment of microsomal membranes with 0.12 M KCl. Using disc-electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate one major protein component (mol. weight about 90 000) and three minor ones with molecular weights of 110 000, 80 000, and 60 000 were found in the soluble fraction. In addition to proteins, the fraction was found in the soluble fraction. In addition to proteins, the fraction was found to contain a small amount of phospholipids. The deaminase found in the solution may be reconstructed into the membranes at a decrease in KCl concentration, part of enzyme being bound in the inactive form under excess of the soluble fraction. Deaminase binding to the membranes is unaffected by the changes within the pH range of 6.2--7.8 and temperature range of 4--10 degrees C. It is assumed that AMP-deaminase is bound to other membrane components by electrostatic bonds.  相似文献   

3.
Protein Kinase and Phosphoproteins of Vesicular Stomatitis Virus   总被引:28,自引:25,他引:3       下载免费PDF全文
Protein kinases of similar but not identical activity were found associated with vesicular stomatitis (VS) virions grown in mouse L cells, primary chicken embryo (CE) cells, and BHK-21 cells, as well as being present in VS virions grown in HeLa and Aedes albopictus cells. The virion kinase preferentially phosphorylated the nucleocapsid NS protein in vitro and to a lesser extent the envelope M protein. Other virion proteins were phosphorylated in vitro only after drastic detergent treatment. Partial evidence that the virion kinase is of cellular origin was obtained by finding reduced enzyme activity in virions released from cells pretreated with actinomycin D and cycloheximide. Selective detergent and detergent-salt fractionation of VS virions revealed that the kinase activity was present in the envelope but not the spikes. The virion kinase activity in a Triton-salt-solubilized envelope fraction could be separated from M and G proteins and partially purified by phosphocellulose column chromatography. Virions released from L, CE, and BHK-21 cells infected in the presence of [(32)P]orthophosphate were labeled almost exclusively in the NS protein. Both soluble and nucleocapsid-associated NS phosphoprotein were present in cytoplasmic extracts of VS viral-infected L cells. The origin and function of the NS phosphoprotein remain to be elucidated.  相似文献   

4.
Calmodulin-binding proteins of Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The subcellular distribution of calmodulin-binding proteins in the soluble, plasma membrane, and nuclear fractions of Saccharomyces cerevisiae was analyzed with a gel binding assay using 125I-labeled calmodulin. Over 20 binding proteins were detected. The calmodulin-binding protein profiles were markedly different among the fractions. Calmodulin-binding proteins were most abundant in the nuclear fraction, followed by the membrane fraction and the soluble fraction in decreasing order. The amounts of certain calmodulin-binding proteins increased after treatment with alpha-mating factor.  相似文献   

5.
6.
Cobalamin binding activity occurred in the soluble fraction (69%) and the membrane fraction (31%) of Euglena mitochondria. The mitochondrial soluble cobalamin binding protein was purified about 580-fold in a yield of 34%; the membrane-bound cobalamin binding protein was solubilized with 2 M urea and partially purified. Both purified mitochondrial cobalamin binding proteins showed low pH dependency for activity. The pH optima of the soluble and membrane-bound cobalamin binding proteins were in the vicinity of 7.0 and 6.0–8.0, respectively. The K s values of the soluble and membrane-bound cobalamin binding proteins for cyanocobalamin were 0.3 and 0.9 nM, respectively. Neither mitochondrial cobalamin binding proteins required metal ions for activity, but the activity of the soluble and membrane-bound cobalamin binding proteins was inhibited by 1 mM Mn2+, 48% and 89%, respectively. Molecular weight of the soluble cobalamin binding protein was calculated to be 93,000. The physiological roles of both mitochondrial cobalamin binding proteins were discussed on the basis of their properties and location in Euglena mitochondria.Abbreviations Cbl cobalamin - Ado-Cbl 5-deoxyadenosylcobalamin - CN-Cbl cyanocobalamin - Me-Cbl methylcobalamin - OH-Cbl hydroxocobalamin - 2-AMP-Cbl 2-amino-2-methylpropanolylcobalamin  相似文献   

7.
Soluble proteins can be extracted by osmotic shock of purified rod (photoreceptor cell) outer segments that have intact plasma membranes. The soluble proteins include a component that contains tightly bound GDP-Exchange of this GDP with exogenous nucleotide is catalyzed by (and requires) the membranes from the outer segments. ATP does not participate in these reactions. Approximately one-half of the binding sites in the soluble component require GTP as the source of exogenous nucleotide; the remainder accept GTP or GDP with equal facility. When exogenous GTP is the source of bound nucleotide, it is found in the complex in the form of GDP. Exchange of bound nucleotide with GTP is stoichiometrically related to GTPase activity; this activity is highly dependent upon the presence of both membranes and soluble protein. The soluble nucleotide binding protein was purified by making use of the fact that it binds tightly to the membranes (under conditions of moderate ionic strength) in the absence of GTP and can be eluted by solutions containing low concentrations of GTP (but not GDP or ATP, nor can it be eluted by GTP-free solutions of low ionic strength). The purified protein contains two polypeptide chains of molecular weights 41,000 and 37,000; these are the major species that can be extracted from the outer segments by osmotic shock, and they constitute approximately 7% of the total protein of the isolated organelle.  相似文献   

8.
The Ca2+ indicator, arsenazo III, binds to subcellular fractions of rabbit skeletal muscle with sufficient affinity that in living muscle containing 1–2 mM arsenazo III, the estimated free arsenazo III concentration is only 50–200 μM; 80–90% of the bound arsenazo III is associated with soluble proteins.The binding of arsenazo III to soluble proteins decreases the optical response of the dye to Ca2+; this is due to a decrease in the affinity of the protein-bound dye for Ca2+. Approximately half of the bound arsenazo III is released from the particulate fraction and soluble proteins upon addition of 5 mM Ca2+, suggesting that the Ca-arsenazo complex has lower affinity for the protein binding sites than the free dye.The Ca2+ binding to the soluble protein fraction of rabbit skeletal muscle is attributable largely to its parvalbumin content.  相似文献   

9.
Clack JW 《BMB reports》2008,41(7):548-553
The interaction of the rod GTP binding protein, Transducin (G(t)), with bleached Rhodopsin (R(*)) was investigated by measuring radiolabeled guanine nucleotide binding to and release from soluble and/or membrane-bound G(t) by reconstituting G(t) containing bound GDP (G(t-)GDP) or the hydrolysis-resistant GTP analog guanylyl imidodiphosphate (G(t-)p[NH]ppG) with R* under physiological conditions. Release of GDP and p[NH]ppG from G(t) occurred to the same extent and with the same light sensitivity both in the presence and absence of added GTP. Significant amounts of G(t) without bound nucleotide (G(t-)) were generated. When ROS containing bleached rhodopsin (R(*)) were centrifuged in low ionic strength buffer, G(t-) remained associated with the membrane fraction, whereas G(t-)GDP remained in the soluble fraction. These results suggest that G(t-)GDP and G(t-)p[NH]ppG have similar affinities for R(*). The results also suggest that G(t-), rather than G(t-)GDP, is the moiety which exhibits tight, "light-induced" binding to rhodopsin.  相似文献   

10.
Auxin-binding proteins, have been identified in the soluble cytoplasrnic protein fraction of etiolated pea epicotyls, Pisum sativum L., cv. "Dippes Gelbe Victoria". The binding is specific for the auxins NAA, IAA and 2,4-D with a KD in the range of 0.1–0.4 μ M . Moreover, the binding is competitive, sensitive to digestion by proteinase and shows linearity with the protein content of the assay mixture. The binding proteins appear to be very labile, since repeated freezing and thawing destroys specific binding. No clear pH-optimum could be detected in the physiological pH-range 5.5–8.0, but the binding was doubled at pH 8.0 compared to pH 5.5–7.0.  相似文献   

11.
A cDNA clone encoding a small GTP binding protein (Brho) was isolated from an embryonic cDNA library of Bombyx mori that encoded a polypeptide with 202 amino acids sharing 60-80% similarity with the Rho1 family of GTP binding proteins. The effector site and one of the guanine nucleotide binding sites differed from other members of the Rho family. To characterize the biochemical properties of Brho, the clone was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. The recombinant protein was purified to homogeneity with glutathione S-Sepharose. The fusion protein bound [(35)S] GTPgammaS and [(3)H] GDP with association constants of 11x10(6) M(-1) and 6.2x10(6) M(-1), respectively. The binding of [(35)S] GTPgammaS was inhibited by GTP and GDP, but by no other nucleotides. The calculated GTP-hydrolysis activity was 89.6 m mol/min/mol of Brho. Bound [(35)S] GTPgammaS and [(3)H] GDP were exchanged with GTPgammaS most efficiently in the presence of 6 mM MgCl(2). These results suggest that Brho has a higher affinity for GTP than GDP, converts from the GTP-bound state into the GDP-bound state by intrinsic GTP hydrolytic activity, and returns to the GTP-bound state with the exchange of GDP with GTP. Arch.  相似文献   

12.
Viral mRNA extracted from the serum of a patient infected with HCV strain 1a was used for cloning, expression, and purification of full-length Hepatitis C NS3 protein. Sequencing of the protease gene identified the virus to be a new variant closely related to strain H77, differing in 15 out of 631 amino acids in the NS3 protein, none of which were predicted to be directly involved in catalysis, binding of substrate, or cofactor. A pBAD expression system was used to express the enzyme with an N-terminal tag in Escherichia coli. Purification from the soluble cellular fraction was achieved by Ni(2+)-IMAC and PolyU Sepharose affinity chromatography. The dependence of the proteolytic activity of the full-length NS3 protein on ionic strength, glycerol concentration, and a peptide corresponding to the activating region of NS4A was analyzed and used to design an activity assay that is suitable for inhibition studies. The kinetic constants (k(cat) and K(M)) for catalysis and the inhibitory potencies (IC(50) and K(i)) of five product-based hexapeptide inhibitors were comparable to those reported for the truncated NS3 protein. Detailed kinetic and inhibition studies using this variant of full-length NS3 can increase the understanding of the enzymatic characteristics of NS3, reveal the importance of the substituted amino acids and the significance of the genetic variability for design of effective inhibitors of the virus, and is thus of relevance for drug discovery.  相似文献   

13.
Multiple aflatoxin B1 binding proteins exist in rat liver cytosol   总被引:1,自引:0,他引:1  
The in vitro binding of aflatoxin B1 to rat liver cytosolic proteins was investigated. Aflatoxin B1 binding activity was assayed with protein purified by gel permeation chromatography, ammonium sulfate fractionation, and DEAE-cellulose chromatography. Twenty-five percent of the total binding activity was associated with proteins eluted by 0 and 0.1 M NaCl. Over 50% of the total binding activity was associated with protein present in the 0.2 M NaCl fraction. Glutathione S-transferase activity was also monitored and found only in the low salt (less than 0.2 M NaCl) fractions. The proteins eluted by 0.2 M NaCl were further purified by hydroxylapatite column chromatography and binding was found predominantly in a single fraction. The protein purification steps resulted in a 20-fold increase in the specific binding activity over that initially observed in the cytosol. These results indicate that multiple proteins are capable of binding aflatoxin B1 in rat liver cytosol.  相似文献   

14.
Folate-binding proteins were isolated from the particulate fraction (44,000 X g pellet) and the soluble fraction (44,000 X g supernate) of the homogenate of a spleen obtained from a patient who had an acute leukemic (blast) transformation of chronic myelogenous leukemia. The folate-binding activity which was obtained from the particulate fraction by solubilization with 1% Triton X-100 could be resolved into two binding proteins (Mr 310,000 and 28,000) by gel filtration through Sephadex G-200 after incubation with excess [3H]pteroylglutamic acid (PteGlu). The folate-binding protein in the solubilized particulate fraction and the soluble folate-binding protein in the 44,000 X g supernatant cytoplasm were purified by affinity chromatography. Only a 32 kDa protein was identified by SDS-polyacrylamide gel electrophoresis in the final preparation of the purified folate-binding protein from the particulate, whereas two protein bands (Mr 42,000 and 32,000) were identified by SDS-polyacrylamide gel electrophoresis in the purified preparation of the soluble folate-binding protein. Both of these species were immunologically crossreacting. Both the purified folate-binding protein from the particulate fraction and the purified soluble form had higher affinity for oxidized folate than for the reduced folate cofactors, and both proteins had very low affinity for the antifolate compound, methotrexate. The amino-acid composition of the soluble folate-binding protein was similar with regard to the content of apolar amino acids to that reported for the membrane-derived folate-binding protein purified from milk and human placenta.  相似文献   

15.
v-Ha-ras encoded p21 protein (p21V), the cellular c-Ha-ras encoded protein (p21C) and its T24 mutant form p21T were produced in Escherichia coli under the control of the tac promoter. Large amounts of the authentic proteins in a soluble form can be extracted and purified without the use of denaturants or detergents. All three proteins are highly active in GDP binding, GTPase and, for p21V, autokinase activity. Inhibition of [3H]GDP binding to p21C by regio- and stereospecific phosphorothioate analogs of GDP and GTP was investigated to obtain a measure of the relative affinities of the three diphosphate and five triphosphate analogs of guanosine. p21 has a preference for the Sp isomers of GDP alpha S and GTP alpha S. It has low specificity for the Sp isomer of GTP beta S. Together with the data for GDP beta S and GTP gamma S these results are compared with those obtained for elongation factor (EF)Tu and transducin. This has enabled us to probe the structural relatedness of these proteins. We conclude that p21 seems to be more closely related to EF-Tu than to transducin.  相似文献   

16.
Twu KY  Kuo RL  Marklund J  Krug RM 《Journal of virology》2007,81(15):8112-8121
The NS1A proteins of human influenza A viruses bind CPSF30, a cellular factor required for the processing of cellular pre-mRNAs, thereby inhibiting the production of all cellular mRNAs, including beta interferon mRNA. Here we show that the NS1A protein of the pathogenic H5N1 influenza A/Hong Kong/483/97 (HK97) virus isolated from humans has an intrinsic defect in CPSF30 binding. It does not bind CPSF30 in vitro and causes high beta interferon mRNA production and reduced virus replication in MDCK cells when expressed in a recombinant virus in which the other viral proteins are encoded by influenza A/Udorn/72. We traced this defect to the identities of amino acids 103 and 106 in the HK97 NS1A protein, which differ from the consensus amino acids, F and M, respectively, found in the NS1A proteins of almost all human influenza A virus strains. X-ray crystallography has shown that F103 and M106, which are not part of the CPSF30 binding pocket of the NS1A protein, stabilize the NS1A-CPSF30 complex. In contrast to the HK97 NS1A protein, the NS1A proteins of H5N1 viruses isolated from humans after 1998 contain F103 and M106 and hence bind CPSF30 in vitro and do not attenuate virus replication. The HK97 NS1A protein is less attenuating when expressed in a virus that also encodes the other internal HK97 proteins and under these conditions binds to CPSF30 to a substantial extent in vivo. Consequently, these internal HK97 proteins largely compensate for the absence of F103 and M106, presumably by stabilizing the NS1A-CPSF30 complex.  相似文献   

17.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a major structural component of the virion which is generally believed to bridge between the membrane envelope and the ribonucleocapsid (RNP) core. To investigate the interaction of M protein with cellular membranes in the absence of other VSV proteins, we examined its distribution by subcellular fractionation after expression in HeLa cells. Approximately 90% of M protein, expressed without other viral proteins, was soluble, whereas the remaining 10% was tightly associated with membranes. A similar distribution in VSV-infected cells has been observed previously. Conditions known to release peripherally associated membrane proteins did not detach M protein from isolated membranes. Membrane-associated M protein was soluble in the detergent Triton X-114, whereas soluble M protein was not, suggesting a chemical or conformational difference between the two forms. Membranes containing associated M protein were able to bind RNP cores, whereas membranes lacking M protein were not. We suggest that this membrane-bound M fraction constitutes a functional subset of M protein molecules required for the attachment of RNP cores to membranes during normal virus budding.  相似文献   

18.
The binding of [3H]chlorambucil to nuclear proteins, extracted from Yoshida ascites sarcoma cells at 6 h and 24 h after administration of 3H-labelled drug to tumour-bearing animals, has been examined. Both covalent and non-covalent binding was detected. Considerably more drug was found associated with the proteins isolated from the tumour sensitive to the effects of the drug compared with similar proteins isolated from the tumour with an acquired resistance to the effects of alkylating agents. The two-fold difference in binding to total cell protein is attributed to a higher intranuclear protein binding in sensitive cells. In particular the soluble nuclear sap fraction from sensitive cells bound at least five times as much drug as the corresponding fraction from resistant cells. Low levels of binding to histones were demonstrated compared with that to the non-histone chromatin proteins. Binding to the nuclear sap and non-histone chromatin proteins was principally to high molecular weight protein species; these did not appear to represent aggregation products as scans of stained polyacrylamide gels of the extracted protein fractions were unaltered by the treatment of tumour-bearing animals with chlorambucil. Binding to the nuclear proteins from sensitive cells tended to persist over a 24-h period, whereas it was considerably reduced in resistant cells.  相似文献   

19.
We have analyzed the nature of RecA protein-RecA protein interactions using an affinity column prepared by coupling RecA protein to an agarose support. When radiolabeled soluble proteins from Escherichia coli are applied to this column, only the labeled RecA protein from the extract was selectively retained and bound tightly to the affinity column. Efficient binding of purified 35S-labeled RecA protein required Mg2+, and high salt did not interfere with the binding of RecA protein to the column. Complete removal of the bound enzyme from the affinity column required treatment with guanidine HCl (5 M) or urea (8 M). These and other properties suggest that hydrophobic interactions contribute significantly to RecA protein subunit recognition in solution. Using a series of truncated RecA proteins synthesized in vitro, we have obtained evidence that at least some of the sequences involved in protein recognition are localized within the first 90 amino-terminal residues of the protein. Based on the observation that RecA proteins from three heterologous bacteria are specifically retained on the E. coli RecA affinity column, it is likely that this binding domain is highly conserved and is required for interaction and association of RecA protein monomers. Stable ternary complexes of RecA protein and single-stranded DNA were formed in the presence of the nonhydrolyzable ATP analog adenosine 5'-O-(thiotriphosphate) and applied to the affinity columns. Most of the complexes formed with M13 DNA could be eluted in high salt, whereas a substantial fraction of those formed with the oligonucleotide (dT)25-30 remained bound in high salt and were quantitatively eluted with guanidine HCl (5 M). The different binding properties of these RecA protein-DNA complexes likely reflect differences in the availability of a hydrophobic surface on RecA protein when it is bound to long polynucleotides compared to short oligonucleotides.  相似文献   

20.
Several G-proteins (GTP-binding proteins) were identified by SDS/PAGE in the cytosol (105,000 g supernatant) and membrane fractions of the oestrogen-dependent human mammary-tumour cell line ZR-75-1. These proteins, with molecular masses in the range 18-29 kDa, specifically bind [alpha-32P]GTP, which can be displaced by unlabelled GTP, GDP and their non-hydrolysable analogues guanosine 5'-[delta-thio]triphosphate (GTP[S]) and guanosine 5'-[beta-thio]diphosphate (GDP[S]), but not by GMP, ATP, ADP, AMP and other unrelated nucleotides. The apparent dissociation constant for GTP was approx. 2 x 10(-8)M. Homogenization of ZR-75-1 cells in high-salt buffer (1 M-KCl), and successive washing of the membrane fraction, suggested that, among the major G-proteins found, the 18 kDa protein is predominantly soluble, whereas the 27-29 kDa complex is primarily bound to the membrane fraction under the experimental conditions employed. Possible translocation of these G-proteins between membrane and cytosol was analysed. No redistribution of the 27-29 kDa complex was observed, whereas GTP[S] in the presence of Mg2+ caused apparent translocation of the 18 kDa protein to the membrane fraction. This effect was specific for GTP and stable GTP analogues, whereas GDP, GMP, ATP, ADP, AMP and other unrelated nucleotides were ineffective. GTP[S] and guanosine 5'-[beta gamma-imido]-triphosphate (p[NH]ppG) were equally potent (apparent Kd approximately 5 x 10(-6)M), whereas GTP was rather weak. The nucleotide effect is temperature-, time- and concentration-dependent. The translocation process was reversible, slow, and reached its maximum between 30 and 60 min at 37 degrees C. The apparent translocation of this small G-protein from the cytosol to the membrane fraction, and the specific effect of GTP analogues, suggest that this process may have functional significance in mammary-tumour cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号