首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in specific ratios may be useful in the purification of adenylate cyclase and other intrinsic membrane proteins.  相似文献   

2.
Transmission of energetic signals to membrane sensors, such as the ATP-sensitive K+ (KATP) channel, is vital for cellular adaptation to stress. Yet, cell compartmentation implies diffusional hindrances that hamper direct reception of cytosolic energetic signals. With high intracellular ATP levels, KATP channels may sense not bulk cytosolic, but rather local submembrane nucleotide concentrations set by membrane ATPases and phosphotransfer enzymes. Here, we analyzed the role of adenylate kinase and creatine kinase phosphotransfer reactions in energetic signal transmission over the strong diffusional barrier in the submembrane compartment, and translation of such signals into a nucleotide response detectable by KATP channels. Facilitated diffusion provided by creatine kinase and adenylate kinase phosphotransfer dissipated nucleotide gradients imposed by membrane ATPases, and shunted diffusional restrictions. Energetic signals, simulated as deviation of bulk ATP from its basal level, were amplified into an augmented nucleotide response in the submembrane space due to failure under stress of creatine kinase to facilitate nucleotide diffusion. Tuning of creatine kinase-dependent amplification of the nucleotide response was provided by adenylate kinase capable of adjusting the ATP/ADP ratio in the submembrane compartment securing adequate KATP channel response in accord with cellular metabolic demand. Thus, complementation between creatine kinase and adenylate kinase systems, here predicted by modeling and further supported experimentally, provides a mechanistic basis for metabolic sensor function governed by alterations in intracellular phosphotransfer fluxes.  相似文献   

3.
Abalone sperm adenylate cyclase activity is particulate in nature and displays a high Mg2+-supported activity (Mg2+/Mn2+ = 0.8) as compared to other sperm adenylate cyclases. Approximately 90% of the enzyme activity in crude homogenates is inhibited by EGTA in a concentration-dependent manner which is overcome by added micromolar free Ca2+. The EGTA-inhibited Ca2+-stimulated enzyme activity is also inhibited by phenothiazines. Added calmodulin, however, has no effect on enzyme activity prepared from crude homogenates. Preparation of a twice EGTA-extracted 48,000 X g pellet fraction yields a particulate enzyme activity that can be stimulated 10-65% by added calmodulin in the presence of micromolar free Ca2+. Detergent extraction (1% Lubrol PX) of the EGTA-washed 48,000 X g pellet solubilizes 2-5% of the total particulate adenylate cyclase activity, and this solubilized enzyme is activated up to 125% by calmodulin. The ability of the different enzyme preparations to be stimulated by calmodulin is inversely proportional to the endogenous calmodulin concentration. Calmodulin stimulation of the Lubrol PX-solubilized enzyme is specific to this Ca2+-binding protein and is mediated as an effect on the velocity of the enzyme. This stimulation is completely Ca2+ dependent and is fully reversible. These data suggest that the control of sperm cAMP synthesis by changes in Ca2+ conductance may be mediated via this Ca2+-binding protein.  相似文献   

4.
Treatment of mouse lymphocytes with very low concentrations of alamethicin or Lubrol PX induces spontaneous permeabilization of the plasma membrane to ATP and allows determination of adenylate cyclase activity in whole cells. The permeabilized cells retain responsiveness to hormones (isoproterenol, adenosine analogs) and to fluoride. The main advantage of this new method is that it does not require any homogenization step, and thus adenylate cyclase activities can be accurately and reproducibly measured with very low amounts of cells. It should be especially useful for the study of purified lymphocyte subpopulations.  相似文献   

5.
Purification of pork renal cortex membranes yielded a particulate adenylate cyclase retaining good sensitivity to stimulation by parathyroid hormone and glucagon and a modest but significant response to porcine calcitonin. Treatment of this partially purified membrane fraction with 0.5% Lubrol PX and 5 mM NaF released adenylate cyclase activity into a fraction which was not sedimented by centrifugation for 20 min at 37,000 X g or for 2 hours at 100,000 X g and passed through a Millipore filter (0.22 mum pore). This solubilized adenylate cyclase was stimulated by porcine calcitonin and NaF but not by parathyroid hormone or glucagon. On gel filtration (Sephadex G-200) in the presence of 1mM dithiothreitol and 5mM NaF, the major portion of the adenylate cyclase activity eluted with the void volume of the column and showed 2.0-fold stimulation with 10 muM calcitonin. Binding of 125I-labeled porcine calcitonin was demonstrated in the 37,000 X g and the 100,000 X g supernatants. From 74 to 86% of the observed binding could be blocked by the addition of unlabeled porcine calcitonin to the reaction mixture. Addition of salmon calcitonin, parathyroid hormone, or glucagon blocked only 12 to 18% of the binding. The dose-response curves for inhibition of binding of iodinated calcitonin by unlabeled calcitonin and the activation of adenylate cyclase by the hormone each showed 50% maximal effect at a concentration between 4.5 and 8 muM porcine calcitonin and maximal effect at a concentration between 33 and 66 muM porcine calcitonin.  相似文献   

6.
Cholera toxin, or peptide A1 from the toxin, activates adenylate cyclase solubilized from rat liver with Lubrol PX, provided that cell sap, NAD+, ATP and thiol-group-containing compounds are present. The activation is abolished by antisera to whole toxin, but not to subunit B.  相似文献   

7.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

8.
Treatment of mouse lymphocytes with very low concentrations of alamethicin or Lubrol PX induces spontaneous permeabilization of the plasma membrane to ATP and allows determination of adenylate cyclase activity in whole cells. The permeabilized cells retain responsiveness to hormones (isoproterenol, adenosine analogs) and to fluoride. The main advantage of this new method is that it does not require any homogenization step, and thus adenylate cyclase activities can be accurately and reproducibly measured with very low amounts of cells. It should be especially useful for the study of purified lymphocyte subpopulations.  相似文献   

9.
Mouse brain adenylate cyclase has been solubilized with Lubrol PX and separated by isoelectric focusing on polyacrylamide gels. The enzyme activity has been measured with a sensitive assay isolating cyclic AMP from Dowex and alumina columns. The technique allows a one-step analysis of this membrane enzyme from a heterogeneous sample within 6 hr.  相似文献   

10.
A new procedure for the purification of rat brain adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) is presented. The enzyme solubilized in Lubrol PX was purified either by molecular sieving or by hydrophobic chromatography, followed by a preparative isoelectric focusing step. For this purpose, a new isoelectric focusing technique was developed which allows a good resolution of adenylate cyclase in a short period of time. When resolved by this procedure, the enzyme migrated as a single molecular species with a pI of 6.3. When isoelectric focusing was performed in the presence of EGTA, two distinct peaks of activity could be detected at pI 6.1 and 7.3. This suggests that adenylate cyclase consists of two subunits held together by divalent ions. It is shown that the purified adenylate cyclase has a smaller sedimentation coefficient and is less hydrophobic than the native one. We conclude that the adenylate cyclase containing complex was at least partially disaggregated by this procedure.  相似文献   

11.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains the CYR1 polypeptide, responsible for catalyzing formation of cyclic AMP (cAMP) from ATP, and two RAS polypeptides, which mediate stimulation of cAMP synthesis of guanine nucleotides. By analogy to the mammalian enzyme, models of yeast adenylate cyclase have depicted the enzyme as a membrane protein. We have concluded that adenylate cyclase is only peripherally bound to the yeast membrane, based on the following criteria: (i) substantial activity was found in cytoplasmic fractions; (ii) activity was released from membranes by the addition of 0.5 M NaCl; (iii) in the presence of 0.5 M NaCl, activity in detergent extracts had hydrodynamic properties identical to those of cytosolic or NaCl-extracted enzyme; (iv) antibodies to yeast adenylate cyclase identified a full-length adenylate cyclase in both membrane and cytosol fractions; and (v) activity from both cytosolic fractions and NaCl extracts could be functionally reconstituted into membranes lacking adenylate cyclase activity. The binding of adenylate cyclase to the membrane may have regulatory significance; the fraction of activity associated with the membrane increased as cultures approached stationary phase. In addition, binding of adenylate cyclase to membranes appeared to be inhibited by cAMP. These results indicate the existence of a protein anchoring adenylate cyclase to the membrane. The identity of this protein remains unknown.  相似文献   

12.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

13.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

14.
The formation of adenosine 3′:5′-cyclic monophosphate from ATP by testicular mitochondria of immature and mature rats was increased to the same extent by addition of either human chorionic gonadotropin or luteinizing hormone. Follicle stimulating hormone was found to be more active in stimulating adenylate cyclase activity in testicular mitochondria of immature rats. The stimulatory effect of gonadotropins were not suppressed by Ca++ complexing agent ethylene-glycol-bis-(β-amino-ethyl ether) N,N′-tetra-acetic acid. The detergent Lubrol PX, solubilized 75–80% of the mitochondrial adenylate cyclase. The solubilized enzyme was activated by sodium fluoride but not by gonadotropins. The present results indicate a direct effect of gonadotropins on the adenylate cyclase attached to mitochondrial membranes.  相似文献   

15.
Addition of [gamma -32P]ATP to a 2% Brij-78 40,000g supernatant of sea urchin sperm results in the cAMP-dependent phosphorylation of eight to ten proteins. One phosphoprotein of Mr 190 kD is sperm adenylate cyclase (AC). An antiserum to the AC immunoprecipitates the Mr 190 kD protein. Peptide maps of immunoprecipitates show that the AC is the only phosphoprotein present in the Mr 200 kD range. With respect to the in vitro phosphorylation of AC, the endogenous kinase has a Km for ATP of 5.2 microM and is maximally stimulated by 4-8 microM cAMP. The protein kinase inhibitors H8 (9 microM) and PKI (30 U/ml) inhibit the phosphorylation of the AC. The catalytic subunit of bovine cAMP-dependent protein kinase phosphorylates the AC on the same peptides as the endogenous protein kinase. Cyanogen bromide generated peptide maps of the phosphorylated AC show a minimum of five sites of phosphorylation. No change in the Km or Vmax of the sperm AC resulted from the additional phosphorylation by bovine kinase. Calcium ions at submicromolar concentrations completely block the in vitro phosphorylation of the AC, suggesting the presence in the preparation of a Ca2(+) -activated protein phosphatase. To our knowledge, this is the first report of the phosphorylation of an AC by cAMP-dependent protein kinase.  相似文献   

16.
The nonionic detergent Lubrol WX showed diverse, concentration-dependent effects onbasal and stimulated adenylate cyclases. Above concentrations of 0.001-0.01% Lubrol WX, the basal activity of cyclase from Ehrlich ascites cells was inhibed about 50%, and that from rat fat cells was doubled. In both cases, hormonal sensitivity was lost at 0.01%. These effects were reversed upon dilution of the detergent. It is suggested that solubilization of adenylate cyclases at such low concentrations of Lubrol should be attempted since it is conceivable that loss of hormone sensitivity may then be reversible. Different Lubrol-type detergents may also offer centain advantages, since Lubrol PX effects were not identical with those of Lubrol WX.  相似文献   

17.
Mitochondria in excitable cells are recurrently exposed to pulsatile calcium gradients that activate cell function. Rapid calcium uptake by the mitochondria has previously been shown to cause uncoupling of oxidative phosphorylation. To test (i) if periodic nerve firing may cause oscillation of the cytosolic thermodynamic potential of ATP hydrolysis and (ii) if cytosolic adenylate (AK) and creatine kinase (CK) ATP buffering reactions dampen such oscillations, a lumped kinetic model of an excitable cell capturing major aspects of the physiology has been developed. Activation of ATP metabolism by low-frequency calcium pulses caused large oscillation of the cytosolic, but not mitochondrial ATP/ADP, ratio. This outcome was independent of net ATP synthesis or hydrolysis during mitochondrial calcium uptake. The AK/CK ATP buffering reactions dampened the amplitude and rate of cytosolic ATP/ADP changes on a timescale of seconds, but not milliseconds. These model predictions suggest that alternative sources of capacitance in neurons and striated muscles should be considered to protect ATP-free energy-driven cell functions.  相似文献   

18.
The size distribution of adenylate cyclase from the rate renal medulla solubilized with the nonionic detergents Triton X-100 and Lubrol PX was determined by gel filtration and by centrifugation in sucrose density gradients made up in H2O or D2O. The physical parameters of the predominant from in Triton X-100 are 220,w, 5.9 S; Stokes radius, 62 A; partial specific volume (v ), 0.74 ml/g; mass, 159,000 daltons; f/f0, 1.6; axial ratio (prolate ellipsoid), 11. For the minor form the values are : 220,w, 3.0; Stokes radius, 28 A; mass, 38,000 daltons; f/f0, 1.2. The corresponding values determined in Lubrol PX are similar. The value of v for the enzyme indicates that it binds less than 0.2 mg detergent/mg protein. Since interactions with detergents probably substitute for interactions with lipids and hydrophobic amino acid side chains, these findings suggest that no more than 5% of the surface of adenylate cyclase is involved in hydrophobic interactions with other membrance components. Thus, most of the mass of the enzyme is not deeply embedded in the lipid bilayer of the plasma membrance. Similar studies have been performed on the soluble guanylate cyclase of the rate renal medulla. In the absence of detergent, the molecular properties of this enzyme are: s20,w, 6.3 S; Stokes radius, 54 A, v , 0.75 ml/g; mass, 154,000 daltons f/f0, 1.4; axial ratio, 7. The addition of 0.1% Lubrol PX to this soluble enzyme increases its activity two- to fourfold and changes the physical properties to : s20,w, 5.5 S; Stokes radius, 62 A; v , 0.74 ml/g; mass, 148,000 daltons; f/f0, 1.6; axial ratio, 11. These results show that Lubrol PX activates the enzyme by causing a conformational change with unfolding on the polypeptide chain. Guanylate cyclase from the particulate cell fraction can be solubilized with Lubrol PX but has properties quite different from those of the enzyme in the soluble cell fraction. It is a heterogeneous aggregrate with s20,w, 10 S; Stokes radius, 65 A; mass about 300,000 daltons. The conditions which solubilize guanylate cyclase also solubilize adenylate cyclase and the two activities can be separated on the same sucrose gradient.  相似文献   

19.
Guanylate cyclase from the rat renal medulla is found in both the soluble and particulate fractions of the cell. Sucrose density gradient centrifugation and gel filtration in H2O and D2O indicate that the enzyme from the soluble cell fraction has the following properties: S20w, 6.3 S; Stokes radius, 54 A; partial specific volume, 0.75 ml/g; mass, 154,000 daltons; f/fo, 1.4; axial ratio (prolate ellipsoid), 7. The addition of 0.1% Lubrol PX to this fraction activates the enzyme and changes thartial specific volume, 0.74 ml/g; mass, 148,000 daltons; f/fo, 1.6; axial ratio (prolate ellipsoid), 11. These findings show that detergent activates the enzyme by changing its conformation and not simply by dispersing nonsedimentable membrane fragments. The dimensions of this guanylate cyclase in detergent are very similar to those of detergent-solubilized adenylate cyclase from the same tissue (Neer, E.J. (1974) J. Biol. Chem. 249, 6527-6531). Guanylate cyclase can be solubilized from the particulate cell fraction with 1% Lubrol PX but has properties quite different from those of the guanylate cyclase in the soluble cell fraction. It is a large aggregate with a value of S20,w of about 10 S, Stokes radius of 65 A, and a mass of approximately 300,000 daltons. However, the peaks of guanylate cyclase activity in column effluents and sucrose density gradients are very broad indicating a mixture of different size proteins. The conditions used to solubilize guanylate cyclase from the particulate fraction also solubilize adenylate cyclase, and the two activities can be separated on the same sucrose gradient. Studies of this sort require a rapid, accurate guanylate cyclase assay. We have developed an assay for guanylate cyclase activity which meets these criteria by adapting the competitive protein binding assay for guanosine cyclic 3':5' monophosphate originally described by Murad et al. (Murad, F., Manganiello, V., and Vaughn, M. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 736-739).  相似文献   

20.
Cytosolic adenylate kinase synthesis thiamin triphosphate (TTP) from thiamin diphosphate (TDP) in vitro by a reversible reaction: TDP + ADP Mg2+ in equilibrium TTP + AMP. The backward (TTP----TDP) reaction rate was 3-times faster than the forward (TDP----TTP) reaction rate when all the substrate concentrations were 0.1 mM. This property of TTP-synthesizing activity of the enzyme did not explain the fact that the [TTP]/[TDP] molar ratio determined in chicken white skeletal muscle is 5.0 (Miyoshi, K., Egi, Y., Shioda, T. and Kawasaki, T. (1990) J. Biochem. 108, 267-270). To solve this problem, we have studied the properties of TTP-synthesizing activity of the purified recombinant chicken cytosolic adenylate kinase preparation and the effect of adenine nucleotides, especially of ATP. The backward reaction of the TTP synthesis did not proceed in the presence of 8.8 mM ATP, a physiological concentration in chicken white skeletal muscle, while the forward reaction proceeded at a reduced rate. The [TTP]/[TDP] ratio found after a long incubation period was 3.0 and 0.7, respectively, in the presence and absence of 8.8 mM ATP. These results indicate that the high [TTP]/[TDP] molar ratio found in chicken white muscle was demonstrated in vitro by the purified chicken cytosolic adenylate kinase and support in vivo TTP synthesis by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号